Dielectric Properties and Electrical Percolation in MnFe2O4/Epoxy Resin Composites

被引:7
作者
Meisak, Darya [1 ,2 ]
Macutkevic, Jan [1 ]
Selskis, Algirdas [3 ]
Banys, Juras [1 ]
Kuzhir, Polina [2 ,4 ]
机构
[1] Vilnius Univ, Phys Fac, LT-00122 Vilnius, Lithuania
[2] Belarusian State Univ, Res Inst Nucl Problems, Minsk 220030, BELARUS
[3] Ctr Phys Sci & Technol, Dept Characterisat Mat Struct, LT-10257 Vilnius, Lithuania
[4] Univ Eastern Finland, Inst Photon, Yliopistokatu 7, FI-80101 Joensuu, Finland
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2020年 / 217卷 / 06期
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
dielectric properties; electrical percolation; MnFe2O4; FERRITE NANOPARTICLES; MAGNETIC-PROPERTIES; MANGANESE;
D O I
10.1002/pssa.201900526
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Broadband dielectric properties of epoxy composites containing the different additions of manganese ferrite (MnFe2O4) with two spherical particle sizes (28 and 60 nm) are studied in the wide temperature range from 150 to 500 K. The percolation thresholds in such systems are 30 and 29.3 vol% for small and large MnFe2O4 particles, respectively. The small difference in the percolation threshold value is related to a better distribution of larger nanoparticles. Composites above the percolation threshold are appropriate candidates for electromagnetic shielding applications. Above 380 K, the electrical conductivity is typical for all composites, both below and above the percolation thresholds due to the electrical transport in the polymer matrix. The activation energy strongly decreases with MnFe2O4 concentration indicating that the electrical transport occurs simultaneously in both MnFe2O4 and epoxy matrix subsystems.
引用
收藏
页数:6
相关论文
共 21 条
[1]   Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route [J].
Ahmed, SR ;
Ogale, SB ;
Papaefthymiou, GC ;
Ramesh, R ;
Kofinas, P .
APPLIED PHYSICS LETTERS, 2002, 80 (09) :1616-1618
[2]   Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams [J].
Ameli, A. ;
Jung, P. U. ;
Park, C. B. .
CARBON, 2013, 60 :379-391
[3]   Preparation of nano-sized manganese ferrite (MnFe2O4) via coprecipitation method [J].
Amighian, J. ;
Mozaffari, M. ;
Nasr, B. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 9, 2006, 3 (09) :3188-+
[4]  
[Anonymous], 1996, Radar Absorbing Materials: From Theory to Design and Characterization
[5]   Mn-Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal-magnetic properties [J].
Arulmurugan, R ;
Vaidyanathan, G ;
Sendhilnathan, S ;
Jeyadevan, B .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 298 (02) :83-94
[6]   Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave [J].
Bychanok, D. ;
Kuzhir, P. ;
Maksimenko, S. ;
Bellucci, S. ;
Brosseau, C. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (12)
[7]   Magnetic nanoparticle biosensors [J].
Haun, Jered B. ;
Yoon, Tae-Jong ;
Lee, Hakho ;
Weissleder, Ralph .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2010, 2 (03) :291-304
[8]   NEW INTERPRETATION OF DIELECTRIC LOSS PEAKS [J].
JONSCHER, AK .
NATURE, 1975, 256 (5518) :566-567
[9]   Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding [J].
Kuzhir, P. ;
Paddubskaya, A. ;
Bychanok, D. ;
Nemilentsau, A. ;
Shuba, M. ;
Plusch, A. ;
Maksimenko, S. ;
Bellucci, S. ;
Coderoni, L. ;
Micciulla, F. ;
Sacco, I. ;
Rinaldi, G. ;
Macutkevic, J. ;
Seliuta, D. ;
Valusis, G. ;
Banys, J. .
THIN SOLID FILMS, 2011, 519 (12) :4114-4118
[10]  
Lubin G., 2013, HDB COMPOSITES