Discrete-Time Super-Twisting Fractional-Order Observer With Implicit Euler Method

被引:3
|
作者
Xiong, Xiaogang [1 ]
Sharma, Rahul Kumar [2 ]
Kamal, Shyam [2 ]
Ghosh, Sandip [2 ]
Bai, Yang [3 ]
Lou, Yunjiang [1 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
[2] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, Uttar Pradesh, India
[3] Ritsumeikan Univ, Dept Informat Sci & Engn, Kusatsu 5258577, Japan
关键词
Observers; Mathematical models; Heuristic algorithms; Circuits and systems; Convergence; Uncertainty; Tuning; Fractional-Order Systems; Super-Twisting Algorithm (STA); Fractional Adams-Moulton (FAM) Method; Implicit Euler Discretization; Chattering Suppression; DIFFERENTIATION;
D O I
10.1109/TCSII.2021.3131369
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The work presented in this brief describes the design of a discrete-time super-twisting algorithm based fractional-order observer for a class of non-linear fractional-order systems. The proposed observer is shown to achieve higher performance as compared to the conventional integer-order observers in terms of robustness and convergence time. It generalizes the design of observers for the class of non-linear fractional-order systems. The peaking phenomenon is observed to be less significant in the proposed approach. Chattering is suppressed with the Fractional Adams-Moulton Method, which is an implicit Euler discretization technique. The significance of the proposed observer is illustrated through a simulation example.
引用
收藏
页码:2787 / 2791
页数:5
相关论文
共 50 条
  • [31] Lyapunov Stability Analysis of the Implicit Discrete-Time Twisting Control Algorithm
    Huber, Olivier
    Acary, Vincent
    Brogliato, Bernard
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) : 2619 - 2626
  • [32] Discrete-Time Fractional-Order Dynamical Networks Minimum-Energy State Estimation
    Chatterjee, Sarthak
    Alessandretti, Andrea
    Aguiar, Antonio Pedro
    Pequito, Sergio
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (01): : 226 - 237
  • [33] Implicit Discrete-Time Terminal Sliding Mode Control for Second-Order Systems
    Xiong, Xiaogang
    Chu, Yinghao
    Udai, Arun Dayal
    Kamal, Shyam
    Jin, Shanhai
    Lou, Yunjiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (07) : 2508 - 2512
  • [34] Nonsingular Fast Terminal Sliding Mode Control for Permanent Magnet Linear Synchronous Motor via High-Order Super-Twisting Observer
    Xu, Dezhi
    Ding, Bo
    Jiang, Bin
    Yang, Weilin
    Shi, Peng
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (03) : 1651 - 1659
  • [35] Implementation of Super-Twisting Control on Higher Order Perturbed Integrator System using Higher Order Sliding Mode Observer
    Kumari, Kiran
    Chalanga, Asif
    Bandyopadhyay, Bijnan
    IFAC PAPERSONLINE, 2016, 49 (18): : 873 - 878
  • [36] A new synchronization result for fractional-order discrete-time chaotic systems via bandlimited channels
    Hamiche, Hamid
    Megherbi, Ouerdia
    Kemih, Karim
    Kara, Redouane
    Ouslimani, Achour
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [37] STABILITY ANALYSIS OF INTERCONNECTED DISCRETE-TIME FRACTIONAL-ORDER LTI STATE-SPACE SYSTEMS
    Grzymkowski, Lukasz
    Trofimowicz, Damian
    Stefanski, Tomasz P.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2020, 30 (04) : 649 - 658
  • [38] Synchronization Analysis of Discrete-Time Fractional-Order Quaternion-Valued Uncertain Neural Networks
    Li, Hong-Li
    Cao, Jinde
    Hu, Cheng
    Jiang, Haijun
    Alsaadi, Fawaz E.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14178 - 14189
  • [39] Leader-following consensus of discrete-time fractional-order multi-agent systems
    Shahamatkhah, Erfan
    Tabatabaei, Mohammad
    CHINESE PHYSICS B, 2018, 27 (01)
  • [40] Leader-following consensus of discrete-time fractional-order multi-agent systems
    Erfan Shahamatkhah
    Mohammad Tabatabaei
    Chinese Physics B, 2018, 27 (01) : 318 - 325