Characterising lithium-ion electrolytes via operando Raman microspectroscopy

被引:78
作者
Fawdon, Jack [1 ]
Ihli, Johannes [1 ,2 ]
La Mantia, Fabio [3 ]
Pasta, Mauro [1 ,4 ]
机构
[1] Univ Oxford, Dept Mat, Oxford, England
[2] Paul Scherrer Inst, Villigen, Switzerland
[3] Univ Bremen, Energiespeicher & Energiewandlersyst, Bremen, Germany
[4] Harwell Sci & Innovat Campus, Faraday Inst, Quad One, Didcot, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
TRANSPORT-PROPERTIES; TRANSFERENCE NUMBER; METAL ANODE; RECHARGEABLE BATTERIES; CONCENTRATED-SOLUTIONS; DIFFUSION; POLARIZATION; SALT;
D O I
10.1038/s41467-021-24297-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Knowledge of electrolyte transport and thermodynamic properties in Li-ion and beyond Li-ion technologies is vital for their continued development and success. Here, we present a method for fully characterising electrolyte systems. By measuring the electrolyte concentration gradient over time via operando Raman microspectroscopy, in tandem with potentiostatic electrochemical impedance spectroscopy, the Fickian "apparent" diffusion coefficient, transference number, thermodynamic factor, ionic conductivity and resistance of charge-transfer were quantified within a single experimental setup. Using lithium bis(fluorosulfonyl)imide (LiFSI) in tetraglyme (G4) as a model system, our study provides a visualisation of the electrolyte concentration gradient; a method for determining key electrolyte properties, and a necessary technique for correlating bulk intermolecular electrolyte structure with the described transport and thermodynamic properties. The full characterisation of lithium-ion electrolytes is of paramount importance for the continued development and innovation of lithium ion and lithium metal batteries. Here, the authors present a new experimental setup to obtain all key electrolyte parameters using operando Raman microspectroscopy
引用
收藏
页数:9
相关论文
共 46 条
[1]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[2]  
Bard A. J., 2001, ELECTROCHEMICAL METH
[3]   Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI [J].
Bazak, J. David ;
Allen, J. P. ;
Krachkovskiy, S. A. ;
Goward, G. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
[4]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[5]  
Bockris J.O., 2002, Modern Electrochemistry, V1, DOI DOI 10.1007/B113922
[6]   STEADY-STATE CURRENT FLOW IN SOLID BINARY ELECTROLYTE CELLS [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 225 (1-2) :1-17
[7]   Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries [J].
Cabo-Fernandez, Laura ;
Neale, Alex R. ;
Braga, Filipe ;
Sazanovich, Igor, V ;
Kostecki, Robert ;
Hardwick, Laurence J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (43) :23833-23842
[8]   SPECIFIC CONDUCTANCE OF CONCENTRATED SOLUTIONS OF MAGNESIUM SALTS IN WATER-ETHANOL SYSTEM [J].
CASTEEL, JF ;
AMIS, ES .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1972, 17 (01) :55-&
[9]   Communication-7Li MRI Unveils Concentration Dependent Diffusion in Polymer Electrolyte Batteries [J].
Chandrashekar, S. ;
Oparaji, Onyekachi ;
Yang, Guang ;
Hallinan, Daniel, Jr. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) :A2988-A2990
[10]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681