An Optimized Convolutional Neural Network Using diffGrad for Cataract Image Classification

被引:1
|
作者
Sudarsono, Ely [1 ]
Bustamam, Alhadi [1 ]
Tampubolon, Patuan P. [1 ]
机构
[1] Univ Indonesia, Fac Math & Nat Sci, Dept Math, Lab Bioinformat & Adv Comp, Kampus UI, Depok 16424, Jawa Barat, Indonesia
关键词
D O I
10.1063/5.0030746
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The deep learning method is a promising computational technique, especially for image classification problems. One of them is the Convolutional Neural Network (CNN), which is the most popular neural network model used and can understand enough the data. Although CNN is highly accurate, overfitting is a problem that frequently occurred. It could prevent it by optimizing the CNN method using diffGrad optimizer to overcome it. The proposed algorithm performance was validated using the cataract dataset. A cataract is an eye disease that has a clouding of the lens that affects the vision, and it is hard to detect at first. This research purpose is to classify the fundus image of cataract using CNN and optimize it using diffGrad optimizer Finally, from the simulation results on the data from the Kaggle datasets, it is shown that the proposed algorithm can classify the data into two classes. The classes are normal fundus images and cataract fundus images. Also, diffGrad optimizers can increase the accuracy of the classification.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Azhar Imran
    Jianqiang Li
    Yan Pei
    Faheem Akhtar
    Tariq Mahmood
    Li Zhang
    The Visual Computer, 2021, 37 : 2407 - 2417
  • [2] Leukocytes Image Classification Using Optimized Convolutional Neural Networks
    Hosseini, Maryam
    Bani-Hani, Dana
    Lam, Sarah S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
  • [3] Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network
    Imran, Azhar
    Li, Jianqiang
    Pei, Yan
    Akhtar, Faheem
    Mahmood, Tariq
    Zhang, Li
    VISUAL COMPUTER, 2021, 37 (08): : 2407 - 2417
  • [4] Cataract Classification Based on Fundus Image using an Optimized Convolution Neural Network with Lookahead Optimizer
    Syarifah, Mas Andam
    Bustamam, Alhadi
    Tampubolon, Patuan P.
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS2020), 2020, 2296
  • [5] Recycling waste classification using optimized convolutional neural network
    Mao, Wei-Lung
    Chen, Wei-Chun
    Wang, Chien-Tsung
    Lin, Yu-Hao
    RESOURCES CONSERVATION AND RECYCLING, 2021, 164
  • [6] Advancements in Image Classification using Convolutional Neural Network
    Sultana, Farhana
    Sufian, Abu
    Dutta, Paramartha
    2018 FOURTH IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2018, : 122 - 129
  • [7] Pathology Image Classification Using Convolutional Neural Network
    Li, Qunxian
    2015 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND EDUCATION RESEARCH (EER 2015), PT 5, 2015, 9 : 331 - 335
  • [8] Advertisement Image Classification Using Convolutional Neural Network
    An Tien Vo
    Hai Son Tran
    Thai Hoang Le
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 197 - 202
  • [9] Image Classification using small Convolutional Neural Network
    Tripathi, Shyava
    Kumar, Rishi
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 483 - 487
  • [10] An Optimized Deep Convolutional Neural Network Architecture for Concept Drifted Image Classification
    Jameel, Syed Muslim
    Hashmani, Manzoor Ahmed
    Alhussain, Hitham
    Rehman, Mobashar
    Budiman, Arif
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2020, 1037 : 932 - 942