Torsion bounds for elliptic curves and Drinfeld modules

被引:17
作者
Breuer, Florian [1 ]
机构
[1] Univ Stellenbosch, Dept Math Sci, ZA-7600 Stellenbosch, South Africa
关键词
Elliptic curves; Drinfeld modules; Torsion points; Galois representations; ABELIAN-VARIETIES; POINTS; NUMBER;
D O I
10.1016/j.jnt.2009.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive upper bounds on the number of L-rational torsion points on a given elliptic curve or Drinfeld module defined over a finitely generated field K. as a function of the degree [L: K]. Our main tool is the adobe openness of the image of Galois representations, due to Serre, Pink and Rutsche. Our approach is to prove a general result for certain Galois modules, which applies simultaneously to elliptic curves and to Drinfeld modules. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1241 / 1250
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 1987, GRADUATE TEXTS MATH
[2]   Local bounds for torsion points on abelian varieties [J].
Clark, Pete L. ;
Xarles, Xavier .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (03) :532-555
[3]   The Lehmer inequality and the Mordell-Weil theorem for Drinfeld modules [J].
Ghioca, Dragos .
JOURNAL OF NUMBER THEORY, 2007, 122 (01) :37-68
[4]  
Goss D., 1998, BASIC STRUCTURES FUN
[5]   On the number of rational torsion points on an elliptic curve [J].
Hindry, M ;
Silverman, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (02) :97-100
[6]  
HINDRY M, 2008, POINTS TORSION UNPUB
[7]  
HINDRY M, 2008, ARXIV08043031V1MATHN
[8]   TORSION POINTS ON ELLIPTIC-CURVES AND Q-COEFFICIENTS OF MODULAR-FORMS [J].
KAMIENNY, S .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :221-229
[9]   COUNTING POINTS OF SMALL HEIGHT ON ELLIPTIC-CURVES [J].
MASSER, DW .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (02) :247-265
[10]  
Mazur B., 1977, PUBL MATH-PARIS, V47, P33, DOI [DOI 10.1007/BF02684339, 10.1007/BF02684339]