Large-sized graphene oxide/modified tourmaline nanoparticle aerogel with stable honeycomb-like structure for high-efficiency PM2.5 capture

被引:56
作者
Zhang, Shiyu [1 ]
Sun, Jun [1 ]
Hu, Di [1 ]
Xiao, Chao [1 ]
Zhuo, Qiqi [2 ]
Wang, Jianjun [1 ]
Qin, Chuanxiang [1 ]
Dai, Lixing [1 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Coll Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
ALGINATE/GRAPHENE OXIDE AEROGEL; POLYIMIDE AEROGELS; COMPOSITE AEROGEL; PERFORMANCE; ADSORPTION; REMOVAL; FABRICATION; ULTRALIGHT; FILTRATION; NANOSHEETS;
D O I
10.1039/c8ta05506h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) aerogel with special porous structure can combine the advantages of its high adsorbability with excellent mechanical properties to show excellent performance in the capture of particulate matter smaller than 2.5 m (PM2.5) and in the recycling of the aerogel. However, the fabrication of the aerogel with durable ordered large through-pores is challenging due to lack of an effective strategy to control the porous structure from the randomly arranged GO sheets. Herein, a facile fabrication strategy towards the stable honeycomb-like-structured GO aerogel, comprising large-sized GO sheets (LGO), via freeze casting with the help of the electrostatic field effect of tourmaline is reported. The added modified tourmaline nanoparticles (mTNPs) effectively reduce the repulsion between GO sheets and highly promote the ordered stacking of LGO sheets to form honeycomb-like-structured aerogel possessing stable large through-pores. Benefiting from its special porous structure, this hybrid aerogel exhibits superior adsorption for PM2.5 and superior recycling performance. When mTNPs loading is 5 wt%, the PM2.5 filtration efficiency of the aerogel is up to 95.1% in the first adsorption cycle, and more importantly, the aerogel can be used repeatedly and retain the high filtration efficiency after simple recycling.
引用
收藏
页码:16139 / 16148
页数:10
相关论文
共 62 条
[1]   New Generation Adsorbents for Water Treatment [J].
Ali, Imran .
CHEMICAL REVIEWS, 2012, 112 (10) :5073-5091
[2]   Washable Multilayer Triboelectric Air Filter for Efficient Particulate Matter PM2.5 Removal [J].
Bai, Yu ;
Han, Chang Bao ;
He, Chuan ;
Gu, Guang Qin ;
Nie, Jin Hui ;
Shao, Jia Jia ;
Xiao, Tian Xiao ;
Deng, Chao Ran ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (15)
[3]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[4]   High performance agar/graphene oxide composite aerogel for methylene blue removal [J].
Chen, Long ;
Li, Yanhui ;
Du, Qiuju ;
Wang, Zonghua ;
Xia, Yanzhi ;
Yedinak, Emily ;
Lou, Jun ;
Ci, Lijie .
CARBOHYDRATE POLYMERS, 2017, 155 :345-353
[5]   Roll-to-Roll Production of Metal-Organic Framework Coatings for Particulate Matter Removal [J].
Chen, Yifa ;
Zhang, Shenghan ;
Cao, Sijia ;
Li, Siqing ;
Chen, Fan ;
Yuan, Shuai ;
Xu, Cheng ;
Zhou, Junwen ;
Feng, Xiao ;
Ma, Xiaojie ;
Wang, Bo .
ADVANCED MATERIALS, 2017, 29 (15)
[6]   Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area [J].
Cheung, Kalam ;
Daher, Nancy ;
Kam, Winnie ;
Shafer, Martin M. ;
Ning, Zhi ;
Schauer, James J. ;
Sioutas, Constantinos .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (16) :2651-2662
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells [J].
Dong, Dapeng ;
Guo, Haitao ;
Li, Guangyong ;
Yan, Lifeng ;
Zhang, Xuetong ;
Song, Wenhui .
NANO ENERGY, 2017, 39 :470-477
[9]   Synthesis-Structure-Property Relationships for Hyperbranched Aminosilica CO2 Adsorbents [J].
Drese, Jeffrey H. ;
Choi, Sunho ;
Lively, Ryan P. ;
Koros, William J. ;
Fauth, Daniel J. ;
Gray, McMahan L. ;
Jones, Christopher W. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (23) :3821-3832
[10]   Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation [J].
Duan, Jialin ;
Zhang, Xuelin ;
Yuan, Weijian ;
Chen, Hai Long ;
Jiang, Shan ;
Liu, Xiaowei ;
Zhang, Yufeng ;
Chang, Limin ;
Sun, Zhiyuan ;
Du, Juan .
JOURNAL OF POWER SOURCES, 2015, 285 :76-79