Conformal change of special Finsler spaces

被引:0
作者
Youssef, Nabil L. [1 ]
Abed, S. H. [1 ]
Soleiman, A. [2 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
来源
BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS | 2010年 / 15卷 / 02期
关键词
Conformal change; C-h-recurrent; C-2-like; quasi-C-reducible; C-reducible; Berwald space; S-v-recurrent; P*-Finsler manifold; R-3-like; P-symmetric; Chern connection; Hashiguchi connection; QUASI-TANGENT STRUCTURE; CONNECTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is a continuation of the foregoing paper [16]. The main aim is to establish an intrinsic investigation of the conformal change of the most important special Finsler spaces. Necessary and sufficient conditions for such special Finsler manifolds to be invariant under a conformal change are obtained. Moreover, the conformal change of Chern and Hashiguchi connections, as well as their curvature tensors, are given.
引用
收藏
页码:146 / 158
页数:13
相关论文
共 18 条
[1]  
Abed SH., 2008, P MATH PHYS SOC EGYP, V86, P79
[2]  
ABED SH, MATHDG0602404 ARXIV
[3]  
[Anonymous], 2006, Initiation to Global Finslerian Geometry
[4]  
DAZORD P, 1969, THESIS PUBL DEPT MAT
[5]   QUASI-TANGENT STRUCTURE AND CONNECTIONS .1. [J].
GRIFONE, J .
ANNALES DE L INSTITUT FOURIER, 1972, 22 (01) :287-&
[6]   QUASI-TANGENT STRUCTURE AND CONNECTIONS .2. [J].
GRIFONE, J .
ANNALES DE L INSTITUT FOURIER, 1972, 22 (03) :291-338
[7]  
Hashiguchi M., 1976, J. Math. Kyoto Univ, V16, P25
[8]  
HOJO S.-I., 2000, BALK J GEOM APPL, V5, P107
[9]  
Izumi H., 1977, TENSOR, V31, P33
[10]  
Izumi H., 1980, Tensor, N.S., V34, P337