A characterization relating domination, semitotal domination and total Roman domination in trees

被引:11
作者
Cabrera Martinez, Abel [1 ]
Martinez Arias, Alondra [2 ]
Menendez Castillo, Maikel [2 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Oriente, Dept Matemat, Patricio Lumumba S-N, Santiago De Cuba, Cuba
关键词
Total Roman domination; semitotal domination; domination; trees;
D O I
10.22049/cco.2020.26892.1157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A total Roman dominating function on a graph G is a function f:V(G) -> {0, 1, 2} such that for every vertex v is an element of V(G) with f(v) = 0 there exists a vertex u?V(G) adjacent to v with f(u) = 2, and the subgraph induced by the set {x is an element of V(G) : f(x) >= 1} has no isolated vertices. The total Roman domination number of G, denoted gamma(tR)(G), is the minimum weight omega(f) = Sigma(v is an element of V(G))f(v) among all total Roman dominating functions f on G. It is known that gamma(tR)(G) >= gamma(t2)(G) + gamma(G) for any graph G with neither isolated vertex nor components isomorphic to K-2, where gamma(t2)(G) and gamma(G) represent the semitotal domination number and the classical domination number, respectively. In this paper we give a constructive characterization of the trees that satisfy the equality above.
引用
收藏
页码:197 / 209
页数:13
相关论文
共 13 条
[1]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[2]   Total Roman domination subdivision number in graphs [J].
Amjadi, Jafar .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (02) :157-168
[3]   ON THE TOTAL ROMAN DOMINATION IN TREES [J].
Amjadi, Jafar ;
Sheikholeslami, Seyed Mahmoud ;
Soroudi, Marzieh .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) :519-532
[4]   Total Roman Domination Number of Rooted Product Graphs [J].
Cabrera Martinez, Abel ;
Cabrera Garcia, Suitberto ;
Carrion Garcia, Andres ;
Hernandez Mira, Frank A. .
MATHEMATICS, 2020, 8 (10) :1-13
[5]   Dominating the Direct Product of Two Graphs through Total Roman Strategies [J].
Cabrera Martinez, Abel ;
Kuziak, Dorota ;
Peterin, Iztok ;
Yero, Ismael G. .
MATHEMATICS, 2020, 8 (09)
[6]   Further Results on the Total Roman Domination in Graphs [J].
Cabrera Martinez, Abel ;
Cabrera Garcia, Suitberto ;
Carrion Garcia, Andres .
MATHEMATICS, 2020, 8 (03)
[7]   Total Roman domination in the lexicographic product of graphs [J].
Campanelli, Nicolas ;
Kuziak, Dorota .
DISCRETE APPLIED MATHEMATICS, 2019, 263 :88-95
[8]  
Goddard W, 2014, UTILITAS MATHEMATICA, V94, P67
[9]  
Haynes T.W., 2013, Fundamentals of Domination in Graphs, DOI DOI 10.1201/9781482246582
[10]  
Haynes T.W., 1998, Domination in Graphs, V2