Numerical Simulations for Fitting Parameters of Linear and Logistic-Type Fractional-, Variable-Order Equations - Comparision of Methods

被引:0
作者
Oziablo, Piotr [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, Wiejska 45A, PL-15351 Bialystok, Poland
来源
ADVANCES IN NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS | 2020年 / 559卷
关键词
Difference equations; Eigenfunction; Fractional variable-order; Optimization algorithms;
D O I
10.1007/978-3-030-17344-9_6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the work variable-, fractional-order backward difference of the Grunwald-Letnikov type is presented. The backward difference is used to generate simulated experimental data to which additional noise signal is added. Using prepared data four different algorithms of finding the parameter of the order function (assuming that the general family of the function is known) and constant lambda coefficient are compared. The algorithms are: trust region algorithm, particle swarm algorithm, simulated annealing algorithm and genetic algorithm.
引用
收藏
页码:72 / 85
页数:14
相关论文
共 13 条
[1]  
Almeida R, 2018, FRACTIONAL MALTHUSIA, DOI [10.19139/soic.v6i1.465, DOI 10.19139/SOIC.V6I1.465]
[2]  
[Anonymous], 2020, An Introduction To Genetic Algorithms
[3]  
Hilfer R., 2000, Applications of fractional calculus in physics, DOI [10.1142/3779, DOI 10.1142/3779]
[4]   Fractional positive linear systems [J].
Kaczorek, Tadeusz .
KYBERNETES, 2009, 38 (7-8) :1059-1078
[5]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[6]   SIMPLE MATHEMATICAL-MODELS WITH VERY COMPLICATED DYNAMICS [J].
MAY, RM .
NATURE, 1976, 261 (5560) :459-467
[7]   Systems with Fractional Variable-Order Difference Operator of Convolution Type and Its Stability [J].
Mozyrska, Dorota ;
Wyrwas, Malgorzata .
ELEKTRONIKA IR ELEKTROTECHNIKA, 2018, 24 (05) :69-73
[8]   Generalized Fractional- Order Discrete-Time Integrator [J].
Mozyrska, Dorota ;
Ostalczyk, Piotr .
COMPLEXITY, 2017,
[9]   The Z-Transform Method and Delta Type Fractional Difference Operators [J].
Mozyrska, Dorota ;
Wyrwas, Malgorzata .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
[10]  
Nikolaev AG, 2010, INT SER OPER RES MAN, V146, P1, DOI 10.1007/978-1-4419-1665-5_1