On Matrix Product Ansatz for Asymmetric Simple Exclusion Process with Open Boundary in the Singular Case

被引:7
作者
Bryc, Wlodzimierz [1 ]
Swieca, Marcin [1 ,2 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Warsaw Univ Technol, Fac Math & Informat Sci, Pl Politech 1, PL-00661 Warsaw, Poland
关键词
Asymmetric simple exclusion process with open boundary; Askey-Wilson polynomials; Matrix product ansatz; QUADRATIC ALGEBRA; REPRESENTATIONS; DIFFUSION; MODEL;
D O I
10.1007/s10955-019-02367-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a substitute for the matrix product ansatz for asymmetric simple exclusion process with open boundary in the "singular case" alpha beta = q(N)gamma(delta), when the standard form of the matrix product ansatz of Derrida et al. (J Phys A 26(7):1493-1517, 1993) does not apply. In our approach, the matrix product ansatz is replaced with a pair of linear functionals on an abstract algebra. One of the functionals, phi(1), is defined on the entire algebra, and determines stationary probabilities for large systems on L >= N + 1 sites. The other functional, phi(0), is defined only on a finite-dimensional linear subspace of the algebra, and determines stationary probabilities for small systems on L < N + 1 sites. Functional phi(0) vanishes on non-constant Askey-Wilson polynomials and in non-singular case becomes an orthogonality functional for the Askey-Wilson polynomials.
引用
收藏
页码:252 / 284
页数:33
相关论文
共 33 条
[1]  
Aneva B, 2009, TRENDS DIFFERENTIAL, P10
[2]   Matrix-product ansatz as a tridiagonal algebra [J].
Aneva, Boyka .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (39) :11677-11695
[3]  
[Anonymous], 2004, ENCY MATH ITS APPL
[4]  
ASKEY R, 1985, MEM AM MATH SOC, V54, P1
[5]  
Bjorner A., 2005, GRAD TEXT M, V231
[6]   On the Associativity of Infinite Matrix Multiplication [J].
Bossaller, Daniel P. ;
Lopez-Permouth, Sergio R. .
AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (01) :41-52
[7]   q-Gaussian processes: Non-commutative and classical aspects [J].
Bozejko, M ;
Kummerer, B ;
Speicher, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) :129-154
[8]   Asymmetric Simple Exclusion Process with Open Boundaries and Quadratic Harnesses [J].
Bryc, Wodek ;
Wesoowski, Jacek .
JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (02) :383-415
[9]  
Chihara TS, 2011, AN INTRODUCTION TO O
[10]   TABLEAUX COMBINATORICS FOR THE ASYMMETRIC EXCLUSION PROCESS AND ASKEY-WILSON POLYNOMIALS [J].
Corteel, Sylvie ;
Williams, Lauren K. .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (03) :385-415