Observable Zitterbewegung in curved spacetimes

被引:8
作者
Kobakhidze, Archil [1 ]
Manning, Adrian [1 ]
Tureanu, Anca [2 ]
机构
[1] Univ Sydney, Sch Phys, ARC Ctr Excellence Particle Phys Terascale, Sydney, NSW 2006, Australia
[2] Univ Helsinki, Dept Phys, POB 64, Helsinki 00014, Finland
基金
美国国家科学基金会; 芬兰科学院; 澳大利亚研究理事会;
关键词
PARTICLE CREATION;
D O I
10.1016/j.physletb.2016.03.049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Zitterbewegung, as it was originally described by Schrodinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
[31]   Curved spacetime from interacting gauge theories [J].
Butera, Salvatore ;
Westerberg, Niclas ;
Faccio, Daniele ;
Ohberg, Patrik .
CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (03)
[32]   Mode-sum prescription for the renormalized stress energy tensor on black hole spacetimes [J].
Taylor, Peter ;
Breen, Cormac ;
Ottewill, Adrian .
PHYSICAL REVIEW D, 2022, 106 (06)
[33]   Quantum correlators in Friedmann spacetimes: The omnipresent de Sitter spacetime and the invariant vacuum noise [J].
Lochan, Kinjalk ;
Rajeev, Karthik ;
Vikram, Amit ;
Padmanabhan, T. .
PHYSICAL REVIEW D, 2018, 98 (10)
[34]   Conformal vacuum and the fluctuation-dissipation theorem in a de Sitter universe and black hole spacetimes [J].
Das, Ashmita ;
Dalui, Surojit ;
Chowdhury, Chandramouli ;
Majhi, Bibhas Ranjan .
PHYSICAL REVIEW D, 2019, 100 (08)
[35]   Rest frame vacua of massive Klein-Gordon fields on spatially flat FLRW spacetimes [J].
Cotaescu, Ion I. .
EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (07)
[36]   Three-generation neutrino oscillations in curved spacetime [J].
Zhang, Yu-Hao ;
Li, Xue-Qian .
NUCLEAR PHYSICS B, 2016, 911 :563-581
[37]   Quantum theory, thermal gradients and the curved Euclidean space [J].
Ganesh, S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (17)
[38]   On Graviton Propagation in Curved Space-Time Background [J].
Arbuzova, E., V ;
Dolgov, A. D. ;
Panasenko, L. A. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2022, 135 (03) :304-311
[39]   Creation of vector bosons by an electric field in curved spacetime [J].
Kangal, E. Ersin ;
Yanar, Hilmi ;
Havare, Ali ;
Sogut, Kenan .
ANNALS OF PHYSICS, 2014, 343 :40-48
[40]   VACUUM POLARIZATION IN SPATIALLY-FLAT N-DIMENSIONAL FRIEDMAN-ROBERTSON-WALKER SPACETIMES [J].
Matyjasek, Jerzy ;
Sadurski, Pawel .
ACTA PHYSICA POLONICA B, 2014, 45 (11) :2027-2045