Inductive effects in cobalt-doped nickel hydroxide electronic structure facilitating urea electrooxidation

被引:38
作者
Tatarchuk, Stephen W. [1 ,2 ]
Choueiri, Rachelle M. [1 ,2 ,3 ]
Medvedeva, Xenia, V [1 ,2 ]
Chen, Leanne D. [3 ]
Klinkova, Anna [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] Univ Guelph, Electrochem Technol Ctr, Dept Chem, Guelph, ON N1G 2W1, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
Urea oxidation reaction; Electronic structure; Nickel-cobalt hydroxide; Electrocatalysis; DFT; Sol-gel; TOTAL-ENERGY CALCULATIONS; OXYGEN EVOLUTION; WATER OXIDATION; ALPHA-COBALT; METAL; ELECTROCATALYSTS; OXIDE; RAMAN;
D O I
10.1016/j.chemosphere.2021.130550
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrochemical oxidation of urea provides an approach to prevent excess urea emissions into the environment while generating value by capturing chemical energy from waste. Unfortunately, the source of high catalytic activity in state-of-the-art doped nickel catalysts for urea oxidation reaction (UOR) activity remains poorly understood, hindering the rational design of new catalyst materials. In particular, the exact role of cobalt as a dopant in Ni(OH)(2) to maximize the intrinsic activity towards UOR remains unclear. In this work, we demonstrate how tuning the Ni:Co ratio allows us to control the intrinsic activity and number of active surface sites, both of which contribute towards increasing UOR performance. We show how Ni90Co10(OH)(2) achieves the largest geometric current density due to the increase of available surface sites and that intrinsic activity towards UOR is maximized with Ni20Co80(OH)(2). Through density functional theory calculations, we show that the introduction of Co alters the Ni 3d electronic state density distribution to lower the minimum energy required to oxidize Ni and influence potential surface adsorbate interactions. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 74 条
[1]   Significant Reduction in NiO Band Gap Upon Formation of LixNi1-xO alloys: Applications To Solar Energy Conversion [J].
Alidoust, Nima ;
Toroker, Maytal Caspary ;
Keith, John A. ;
Carter, Emily A. .
CHEMSUSCHEM, 2014, 7 (01) :195-201
[2]   Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting? [J].
Anantharaj, Sengeni ;
Kundu, Subrata .
ACS ENERGY LETTERS, 2019, 4 (06) :1260-1264
[3]   SOME EFFECTS OF THE ADDITION OF COBALT TO THE NICKEL-HYDROXIDE ELECTRODE [J].
ARMSTRONG, RD ;
BRIGGS, GWD ;
CHARLES, EA .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1988, 18 (02) :215-219
[4]   SOME EFFECTS OF COBALT HYDROXIDE UPON THE ELECTROCHEMICAL-BEHAVIOR OF NICKEL-HYDROXIDE ELECTRODES [J].
ARMSTRONG, RD ;
CHARLES, EA .
JOURNAL OF POWER SOURCES, 1989, 25 (02) :89-97
[5]   Electrochemical and Raman studies of beta-type nickel hydroxides Ni1-xCox(OH)(2) electrode materials [J].
Audemer, A ;
Delahaye, A ;
Farhi, R ;
SacEpee, N ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :2614-2620
[6]   Structural defects and electrochemical reactivity of beta-Ni(OH)(2) [J].
Bernard, MC ;
Cortes, R ;
Keddam, M ;
Takenouti, H ;
Bernard, P ;
Senyarich, S .
JOURNAL OF POWER SOURCES, 1996, 63 (02) :247-254
[7]   A solid solution series of atacamite type Ni2xMg2-2xCl(OH)3 [J].
Bette, Sebastian ;
Dinnebier, Robert E. ;
Roeder, Christian ;
Freyer, Daniela .
JOURNAL OF SOLID STATE CHEMISTRY, 2015, 228 :131-140
[8]  
Calculate U for LSDAthornU, 2019, VASPWIKI
[9]   First Principles Study of Cobalt (Hydr)oxides under Electrochemical Conditions [J].
Chen, Jia ;
Selloni, Annabella .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (39) :20002-20006
[10]   Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the N-N Bond [J].
Chen, Wei ;
Xu, Leitao ;
Zhu, Xiaorong ;
Huang, Yu-Cheng ;
Zhou, Wang ;
Wang, Dongdong ;
Zhou, Yangyang ;
Du, Shiqian ;
Li, Qiling ;
Xie, Chao ;
Tao, Li ;
Dong, Chung-Li ;
Liu, Jilei ;
Wang, Yanyong ;
Chen, Ru ;
Su, Hui ;
Chen, Chen ;
Zou, Yuqin ;
Li, Yafei ;
Liu, Qinghua ;
Wang, Shuangyin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :7297-7307