A multiscale mortar mixed finite element method

被引:247
作者
Arbogast, Todd [1 ]
Pencheva, Gergina
Wheeler, Mary F.
Yotov, Ivan
机构
[1] Univ Texas, Inst Computat Engn & Sci, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[4] Univ Texas, Dept Petr & Geosyst Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
multiscale; mixed finite element; mortar finite element; error estimates; a posteriori; superconvergence; multiblock; nonmatching grids;
D O I
10.1137/060662587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop multiscale mortar mixed finite element discretizations for second order elliptic equations. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a. ne grid scale. The polynomial degree of the mortar and subdomain approximation spaces may differ; in fact, the mortar space achieves approximation comparable to the fine scale on its coarse grid by using higher order polynomials. Our formulation is related to, but more flexible than, existing multiscale finite element and variational multiscale methods. We derive a priori error estimates and show, with appropriate choice of the mortar space, optimal order convergence and some superconvergence on the. ne scale for both the solution and its flux. We also derive efficient and reliable a posteriori error estimators, which are used in an adaptive mesh refinement algorithm to obtain appropriate subdomain and mortar grids. Numerical experiments are presented in confirmation of the theory.
引用
收藏
页码:319 / 346
页数:28
相关论文
共 48 条
[1]   On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation [J].
Aarnes, JE .
MULTISCALE MODELING & SIMULATION, 2004, 2 (03) :421-439
[2]   A hierarchical multiscale method for two-phase flow based upon mixed finite elements and nonuniform coarse grids [J].
Aarnes, Jorg E. ;
Krogstad, Stein ;
Lie, Knut-Andreas .
MULTISCALE MODELING & SIMULATION, 2006, 5 (02) :337-363
[3]  
[Anonymous], 1978, STUDIES MATH ITS APP
[4]  
Arbogast T, 1998, SIAM J SCI COMPUT, V19, P404, DOI 10.1137/S1064827594264545
[5]   A non-mortar mixed finite element method for elliptic problems on non-matching multiblock grids [J].
Arbogast, T ;
Yotov, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 149 (1-4) :255-265
[6]   Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems [J].
Arbogast, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :576-598
[7]  
Arbogast T, 1998, COMP MET WATER RES, V12, P405
[8]   Mixed finite element methods on nonmatching multiblock grids [J].
Arbogast, T ;
Cowsar, LC ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1295-1315
[9]   Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences [J].
Arbogast, T ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :828-852
[10]   Subgrid upscaling and mixed multiscale finite elements [J].
Arbogast, Todd ;
Boyd, Kirsten J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :1150-1171