Flexible Conductive Composites with Programmed Electrical Anisotropy Using Acoustophoresis

被引:37
作者
Melchert, Drew S. [1 ]
Collino, Rachel R. [2 ]
Ray, Tyler R. [3 ]
Dolinski, Neil D. [1 ]
Friedrich, Leanne [1 ]
Begley, Matthew R. [1 ]
Gianola, Daniel S. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Engn 2 Bldg 1355, Santa Barbara, CA 93106 USA
[2] Los Alamos Natl Lab, Div Mat Sci & Technol, MST 7 Engn Mat, Los Alamos, NM 87545 USA
[3] Univ Hawaii Manoa, Dept Mech Engn, 2540 Dole St,Holmes Hall Rm 302, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
3D printing; acoustophoresis; anisotropy; flexible conductive composites; POLYMER COMPOSITES; CARBON NANOTUBES; ACOUSTIC CONTROL; MICROSTRUCTURES; DEPOSITION; LIQUID; INK; NANOCOMPOSITES;
D O I
10.1002/admt.201900586
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing mechanically flexible composite materials with high electrical conductivity is currently hindered by the need to use high loading of conductive filler, which severely limits flexibility. Here, acoustic focusing is used to control arrangement of conductive particles in photopolymer matrices to create composites with both tunable conductivity and flexibility. Acoustophoresis patterns filler particles into highly efficient percolated networks which utilize up to 97% of the particles in the composite, whereas the inefficient stochastic networks of conventional dispersed-fiber composites utilize <5%. These patterned materials have conductivity an order of magnitude higher than conventional composites made with the same ink, reaching 48% the conductivity of bulk silver within the assembled silver-particle networks (at 2.6 vol% loading). They also have low particle loading so that they are flexible, withstanding >500 bending cycles without losses in conductivity and changing conductivity only 5% within cycles on average. In contrast, conventional unpatterned composites with the same conductivity require such high loading that they are prohibitively brittle. Finally, modulating the applied acoustic field controls the anisotropy of the conductive networks and produces materials which are either 2D conductive, 1D conductive, or insulating, using the same nozzle and ink, paving the way for versatile multifunctional 3D printing.
引用
收藏
页数:8
相关论文
共 56 条
[1]   Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes [J].
Ahn, Bok Y. ;
Duoss, Eric B. ;
Motala, Michael J. ;
Guo, Xiaoying ;
Park, Sang-Il ;
Xiong, Yujie ;
Yoon, Jongseung ;
Nuzzo, Ralph G. ;
Rogers, John A. ;
Lewis, Jennifer A. .
SCIENCE, 2009, 323 (5921) :1590-1593
[2]   Measuring the local pressure amplitude in microchannel acoustophoresis [J].
Barnkob, Rune ;
Augustsson, Per ;
Laurell, Thomas ;
Bruus, Henrik .
LAB ON A CHIP, 2010, 10 (05) :563-570
[3]   A review and analysis of electrical percolation in carbon nanotube polymer composites [J].
Bauhofer, Wolfgang ;
Kovacs, Josef Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) :1486-1498
[4]   Acoustofluidics 7: The acoustic radiation force on small particles [J].
Bruus, Henrik .
LAB ON A CHIP, 2012, 12 (06) :1014-1021
[5]   Scaling relationships for acoustic control of two-phase microstructures during direct-write printing [J].
Collino, Rachel R. ;
Ray, Tyler R. ;
Friedrich, Leanne M. ;
Cornell, James D. ;
Meinhart, Carl D. ;
Begley, Matthew R. .
MATERIALS RESEARCH LETTERS, 2018, 6 (03) :191-198
[6]   Deposition of ordered two-phase materials using microfluidic print nozzles with acoustic focusing [J].
Collino, Rachel R. ;
Ray, Tyler R. ;
Fleming, Rachel C. ;
Cornell, James D. ;
Compton, Brett G. ;
Begley, Matthew R. .
EXTREME MECHANICS LETTERS, 2016, 8 :96-106
[7]   Acoustic field controlled patterning and assembly of anisotropic particles [J].
Collino, Rachel R. ;
Ray, Tyler R. ;
Fleming, Rachel C. ;
Sasaki, Camille H. ;
Haj-Hariri, Hossein ;
Begley, Matthew R. .
EXTREME MECHANICS LETTERS, 2015, 5 :37-46
[8]   3D-Printing of Lightweight Cellular Composites [J].
Compton, Brett G. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (34) :5930-+
[9]  
Cortés MT, 2003, E-POLYMERS
[10]   Plastic Metal-Free Electric Motor by 3D Printing of Graphene-Polyamide Powder [J].
de Leon, Al C. ;
Rodier, Bradley J. ;
Bajamundi, Cyril ;
Espera, Alejandro, Jr. ;
Wei, Peiran ;
Kwon, John G. ;
Williams, Jaylen ;
Ilijasic, Fisher ;
Advincula, Rigoberto C. ;
Pentzer, Emily .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (04) :1726-1733