A fast algorithm for determining the linear complexity of a sequence with period pn over GF (q)

被引:41
作者
Xiao, GZ [1 ]
Wei, SM
Lam, KY
Imamura, K
机构
[1] Xidian Univ, Natl Key Lab ISN, Xian 710071, Peoples R China
[2] Natl Univ Singapore, Sch Comp, Singapore 119260, Singapore
[3] Kyushu Inst Technol, Dept Comp Sci & Elect, Iizuka, Fukuoka 820, Japan
关键词
codes; cryptography; fast algorithm; linear complexity; periodic sequence;
D O I
10.1109/18.868492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A fast algorithm is presented for determining the linear complexity of a sequence with period p(n) over GF (q), where p is an odd prime, and where q is a prime and a primitive root (mod p(2)).
引用
收藏
页码:2203 / 2206
页数:4
相关论文
共 11 条
[1]  
AHO AV, 1994, DESIGN ANAL COMPUTER
[2]   A GENERALIZATION OF THE DISCRETE FOURIER-TRANSFORM - DETERMINING THE MINIMAL POLYNOMIAL OF A PERIODIC SEQUENCE [J].
BLACKBURN, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) :1702-1704
[3]   Fast rational interpolation, Reed-Solomon decoding, and the linear complexity profiles of sequences [J].
Blackburn, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) :537-548
[4]  
Ding C., 1991, STABILITY THEORY STR
[5]  
DING CS, 1991, STABILITY THEORY STR, V561, P141
[6]   A FAST ALGORITHM FOR DETERMINING THE COMPLEXITY OF A BINARY SEQUENCE WITH PERIOD 2N [J].
GAMES, RA ;
CHAN, AH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (01) :144-146
[7]  
Lidl R., 1983, FINITE FIELDS
[8]  
MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
[9]  
McEliece Robert J., 1987, Finite Fields for Computer Scientists and Engineers
[10]  
Rosen Kenneth H., 1984, Elementary number theory and its applications