A Comparative Study on the Lithium-Ion Storage Performances of Carbon Nanotubes and Tube-in-Tube Carbon Nanotubes

被引:28
作者
Xu, Yi-Jun [2 ]
Liu, Xi [2 ]
Cui, Guanglei [1 ]
Zhu, Bo [1 ]
Weinberg, Gisela [2 ]
Schloegl, Robert [2 ]
Maier, Joachim [1 ]
Su, Dang Sheng [2 ]
机构
[1] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[2] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
关键词
carbon nanotubes; electrochemistry; energy storage; lithium-ion batteries; nanostructures; HIGH-CAPACITY CARBONS; ELECTROCHEMICAL PERFORMANCE; DISORDERED CARBON; ANODE MATERIAL; INSERTION; BATTERIES; OXIDATION; ENERGY; FIBER; SURFACE;
D O I
10.1002/cssc.200900131
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A comparative study of the electrochemical performances of carbon nanotubes and tube-in-tube carbon nanotubes reveals a dependence effect of lithium-ion storage behavior on the detailed nanostructure of carbon nanotubes. In particular, the impurity that graphitic particles or graphene fragments inherently present in carbon nanotubes plays a crucial role in the lithium-ion storage capacity of the carbon nanotubes. Compared to acid-washed carbon nanotubes, the assembly of graphitic impurity fragments in the tube-in-tube structures hinders lithium-ion diffusion, thus drastically decreasing the rate performance of lithium-ion storage. Significantly, our results indicate that the lithium-ion storage capacity of carbon nanotubes as anode electrodes can be improved or controlled by optimizing the microstructure composition of impurity graphitic nanoparticles or graphene fragments in the matrix of the carbon nanotubes.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 49 条
[1]   Lithium insertion into modified conducting domains of graphitized carbon nanotubes [J].
Alcantara, Ricardo ;
Lavela, Pedro ;
Ortiz, Gregorio F. ;
Tirado, Jose L. ;
Zhecheva, Ekaterina ;
Stoyanova, Radostina .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (10) :A964-A970
[2]   THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES [J].
ARAKAWA, M ;
YAMAKI, JI .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :273-280
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   A disordered carbon as a novel anode material in lithium-ion cells [J].
Bonino, F ;
Brutti, S ;
Reale, P ;
Scrosati, B ;
Gherghel, L ;
Wu, J ;
Müllen, K .
ADVANCED MATERIALS, 2005, 17 (06) :743-+
[5]   X-ray diffraction characterization on the alignment degree of carbon nanotubes [J].
Cao, AY ;
Xu, CL ;
Liang, J ;
Wu, DH ;
Wei, BQ .
CHEMICAL PHYSICS LETTERS, 2001, 344 (1-2) :13-17
[6]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[7]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[8]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840
[9]   One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium-ion storage properties [J].
Deng, Da ;
Lee, Jim Yang .
CHEMISTRY OF MATERIALS, 2007, 19 (17) :4198-4204
[10]   XPS DETERMINATION OF OXYGEN-CONTAINING FUNCTIONAL-GROUPS ON CARBON-FIBER SURFACES AND THE CLEANING OF THESE SURFACES [J].
DESIMONI, E ;
CASELLA, GI ;
MORONE, A ;
SALVI, AM .
SURFACE AND INTERFACE ANALYSIS, 1990, 15 (10) :627-634