Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles

被引:48
作者
Fiorucci, Sebastien [1 ]
Zacharias, Martin [1 ]
机构
[1] Jacobs Univ Bremen, Sch Sci & Engn, Bremen, Germany
关键词
MOLECULAR-DYNAMICS; RECOGNITION SITES; PATCH ANALYSIS; HOT-SPOTS; BINDING; INTERFACES; COMPLEXES; RESIDUES; COMPLEMENTARITY; ASSOCIATION;
D O I
10.1016/j.bpj.2009.12.4332
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based salvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces.
引用
收藏
页码:1921 / 1930
页数:10
相关论文
共 55 条
[1]   Prediction of residues in discontinuous B-cell epitopes using protein 3D structures [J].
Andersen, Pernille Haste ;
Nielsen, Morten ;
Lund, Ole .
PROTEIN SCIENCE, 2006, 15 (11) :2558-2567
[2]   The interface of protein-protein complexes: Analysis of contacts and prediction of interactions [J].
Bahadur, R. P. ;
Zacharias, M. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (7-8) :1059-1072
[3]   Dissecting subunit interfaces in homodimeric proteins [J].
Bahadur, RP ;
Chakrabarti, P ;
Rodier, F ;
Janin, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 (03) :708-719
[4]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[5]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[6]   Optimization of electrostatic interactions in protein-protein complexes [J].
Brock, Kelly ;
Talley, Kemper ;
Coley, Kacey ;
Kundrotas, Petras ;
Alexovy, Emil .
BIOPHYSICAL JOURNAL, 2007, 93 (10) :3340-3352
[7]   Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces [J].
Burgoyne, Nicholas J. ;
Jackson, Richard M. .
BIOINFORMATICS, 2006, 22 (11) :1335-1342
[8]   Free energy landscapes of encounter complexes in protein-protein association [J].
Camacho, CJ ;
Weng, ZP ;
Vajda, S ;
DeLisi, C .
BIOPHYSICAL JOURNAL, 1999, 76 (03) :1166-1178
[9]   Dissecting protein-protein recognition sites [J].
Chakrabarti, P ;
Janin, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :334-343
[10]   Prediction of interface residues in protein-protein complexes by a consensus neural network method: Test against NMR data [J].
Chen, HL ;
Zhou, HX .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 (01) :21-35