Measuring the Spin-Lattice Relaxation Magnetic Field Dependence of Hyperpolarized [1-13C]pyruvate

被引:0
作者
Kim, Soojin [1 ]
Martinez-Santiesteban, Francisco [2 ]
Scholl, Timothy J. [1 ,2 ,3 ]
机构
[1] Western Univ, Dept Med Biophys, London, ON, Canada
[2] Western Univ, Robarts Res Inst, Imaging Res Lab, London, ON, Canada
[3] Ontario Inst Canc Res, Toronto, ON, Canada
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2019年 / 151期
基金
加拿大自然科学与工程研究理事会;
关键词
Bioengineering; Issue; 151; pyruvate; spin-lattice relaxation; dynamic nuclear polarization; field-cycling relaxometry; nuclear magnetic relaxation dispersion (NMRD); hyperpoloarization; PERFUSION ASSESSMENT; CYCLING NMR; C-13; METABOLISM; PYRUVATE; BICARBONATE;
D O I
10.3791/59399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fundamental limit to in vivo imaging applications of hyperpolarized C-13-enriched compounds is their finite spin-lattice relaxation times. Various factors affect the relaxation rates, such as buffer composition, solution pH, temperature, and magnetic field. In this last regard, the spin-lattice relaxation time can be measured at clinical field strengths, but at lower fields, where these compounds are dispensed from the polarizer and transported to the MRI, the relaxation is even faster and difficult to measure. To have a better understanding of the amount of magnetization lost during transport, we used fast field-cycling relaxometry, with magnetic resonance detection of C-13 nuclei at similar to 0.75 T, to measure the nuclear magnetic resonance dispersion of the spin-lattice relaxation time of hyperpolarized [1-C-13]pyruvate. Dissolution dynamic nuclear polarization was used to produce hyperpolarized samples of pyruvate at a concentration of 80 mmol/L and physiological pH (similar to 7.8). These solutions were rapidly transferred to a fast field-cycling relaxometer so that relaxation of the sample magnetization could be measured as a function of time using a calibrated small flip angle (3 degrees-5 degrees). To map the T1 dispersion of the C-1 of pyruvate, we recorded data for different relaxation fields ranging between 0.237 mT and 0.705 T. With this information, we determined an empirical equation to estimate the spin-lattice relaxation of the hyperpolarized substrate within the mentioned range of magnetic fields. These results can be used to predict the amount of magnetization lost during transport and to improve experimental designs to minimize signal loss.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Hyperpolarized 13C Lactate, Pyruvate, and Alanine: Noninvasive Biomarkers for Prostate Cancer Detection and Grading [J].
Albers, Mark J. ;
Bok, Robert ;
Chen, Albert P. ;
Cunningham, Charles H. ;
Zierhut, Matt L. ;
Zhang, Vickie Yi ;
Kohler, Susan J. ;
Tropp, James ;
Hurd, Ralph E. ;
Yen, Yi-Fen ;
Nelson, Sarah J. ;
Vigneron, Daniel B. ;
Kurhanewicz, John .
CANCER RESEARCH, 2008, 68 (20) :8607-8615
[2]   Fast-field-cycling NMR: Applications and instrumentation [J].
Anoardo, E ;
Galli, G ;
Ferrante, G .
APPLIED MAGNETIC RESONANCE, 2001, 20 (03) :365-404
[3]   Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR [J].
Ardenkjaer-Larsen, JH ;
Fridlund, B ;
Gram, A ;
Hansson, G ;
Hansson, L ;
Lerche, MH ;
Servin, R ;
Thaning, M ;
Golman, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10158-10163
[4]   Detection of Tumor Response to a Vascular Disrupting Agent by Hyperpolarized 13C Magnetic Resonance Spectroscopy [J].
Bohndiek, Sarah E. ;
Kettunen, Mikko I. ;
Hu, De-en ;
Witney, Timothy H. ;
Kennedy, Brett W. C. ;
Gallagher, Ferdia A. ;
Brindle, Kevin M. .
MOLECULAR CANCER THERAPEUTICS, 2010, 9 (12) :3278-3288
[5]   Tumor Imaging Using Hyperpolarized 13C Magnetic Resonance [J].
Brindle, Kevin M. ;
Bohndiek, Sarah E. ;
Gallagher, Ferdia A. ;
Kettunen, Mikko I. .
MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (02) :505-519
[6]   Field dependence of T1 for hyperpolarized [1-13C]pyruvate [J].
Chattergoon, N. ;
Martinez-Santiesteban, F. ;
Handler, W. B. ;
Ardenkjaer-Larsen, J. H. ;
Scholl, T. J. .
CONTRAST MEDIA & MOLECULAR IMAGING, 2013, 8 (01) :57-62
[7]   Feasibility of using hyperpolarized [1-13C]lactate as a substrate for in vivo metabolic 13C MRSI studies [J].
Chen, Albert P. ;
Kurhanewicz, John ;
Bok, Robert ;
Xu, Duan ;
Joun, David ;
Zhang, Vickie ;
Nelson, Sarah J. ;
Hurd, Ralph E. ;
Vigneron, Daniel B. .
MAGNETIC RESONANCE IMAGING, 2008, 26 (06) :721-726
[8]   Hyperpolarized c-13 spectroscopic imaging of the TRAMP mouse at 3T - Initial experience [J].
Chen, Albert P. ;
Albers, Mark J. ;
Cunningham, Charles H. ;
Kohler, Susan J. ;
Yen, Yi-Fen ;
Hurd, Ralph E. ;
Tropp, James ;
Bok, Robert ;
Pauly, John M. ;
Nelson, Sarah J. ;
Kurhanewicz, John ;
Vigneron, Daniel B. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) :1099-1106
[9]   Detecting Response of Rat C6 Glioma Tumors to Radiotherapy Using Hyperpolarized [1-13C]Pyruvate and 13C Magnetic Resonance Spectroscopic Imaging [J].
Day, Sam E. ;
Kettunen, Mikko I. ;
Cherukuri, Murali Krishna ;
Mitchell, James B. ;
Lizak, Martin J. ;
Morris, H. Douglas ;
Matsumoto, Shingo ;
Koretsky, Alan P. ;
Brindle, Kevin M. .
MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (02) :557-563
[10]   13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine [J].
Gallagher, Ferdia A. ;
Kettunen, Mikko I. ;
Day, Sam E. ;
Lerche, Mathilde ;
Brindle, Kevin M. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (02) :253-257