Towards a 'Big' Health Data Analytics Platform

被引:6
|
作者
Cha, Sangwhan [1 ]
Abusharekh, Ashraf [1 ]
Abidi, Syed S. R. [1 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, NICHE Res Grp, Halifax, NS, Canada
关键词
Health informatics; Big health data; Health data analytics; Hadoop/MapReduce; SNOMED CT; data integration; data standardization; SEMANTIC INTEROPERABILITY;
D O I
10.1109/BigDataService.2015.13
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Health is generating large volumes of data that can provide invaluable insights into clinical and operational aspects of healthcare delivery. There is a general lack of specialized and integrated health data analytics platforms that offer technical methods to support the entire health data analysis pipeline-i.e. health data selection, integration, analysis, visualization and sharing. This paper proposes the technical architecture of a health data analytics platform that offers a technical solution for analyzing 'big' health data originating from multiple sources with heterogeneous terminologies and schemas. A key aspect of the architecture is data standardization, where we have used SNOMED-CT as a terminology standard to standardize health data from multiple sources. We offer a single step health data integration solution where users can select the data sources and the data elements from multiple sources, and our platform performs the data standardization and data integration to prepare an integrated dataset. We present a case study involving large volumes of laboratory data that is integrated and analyzed using our platform.
引用
收藏
页码:233 / 241
页数:9
相关论文
共 50 条
  • [1] Towards an Efficient Platform for Social Big Data Analytics
    Wang, Jenq-Haur
    Chen, Kuan-Ting
    2015 24TH WIRELESS AND OPTICAL COMMUNICATION CONFERENCE (WOCC), 2015, : 175 - 179
  • [2] Analytics towards big data
    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing
    100876, China
    不详
    100876, China
    不详
    100876, China
    Beijing Youdian Daxue Xuebao, 3 (1-12):
  • [3] The Stratosphere platform for big data analytics
    Alexandrov, Alexander
    Bergmann, Rico
    Ewen, Stephan
    Freytag, Johann-Christoph
    Hueske, Fabian
    Heise, Arvid
    Kao, Odej
    Leich, Marcus
    Leser, Ulf
    Markl, Volker
    Naumann, Felix
    Peters, Mathias
    Rheinlaender, Astrid
    Sax, Matthias J.
    Schelter, Sebastian
    Hoeger, Mareike
    Tzoumas, Kostas
    Warneke, Daniel
    VLDB JOURNAL, 2014, 23 (06): : 939 - 964
  • [4] Big Data Platform for Educational Analytics
    Munshi, Amr A.
    Alhindi, Ahmad
    IEEE ACCESS, 2021, 9 : 52883 - 52890
  • [5] The Stratosphere platform for big data analytics
    Alexander Alexandrov
    Rico Bergmann
    Stephan Ewen
    Johann-Christoph Freytag
    Fabian Hueske
    Arvid Heise
    Odej Kao
    Marcus Leich
    Ulf Leser
    Volker Markl
    Felix Naumann
    Mathias Peters
    Astrid Rheinländer
    Matthias J. Sax
    Sebastian Schelter
    Mareike Höger
    Kostas Tzoumas
    Daniel Warneke
    The VLDB Journal, 2014, 23 : 939 - 964
  • [6] A Hadoop/MapReduce based platform for supporting health big data analytics
    Kuo A.
    Chrimes D.
    Qin P.
    Zamani H.
    Studies in Health Technology and Informatics, 2019, 257 : 229 - 235
  • [7] Towards Streamlined Big Data Analytics
    Benczur, Andras A.
    Palovics, Robert
    Balassi, Marton
    Markl, Volker
    Rabl, Tilmann
    Soto, Juan
    Hovstadius, Bjorn
    Dowling, Jim
    Haridi, Seif
    ERCIM NEWS, 2016, (107): : 31 - 32
  • [8] Visual analytics towards big data
    Ren, Lei
    Du, Yi
    Ma, Shuai
    Zhang, Xiao-Long
    Dai, Guo-Zhong
    Ruan Jian Xue Bao/Journal of Software, 2014, 25 (09): : 1909 - 1936
  • [9] A Big Data platform for smart meter data analytics
    Wilcox, Tom
    Jin, Nanlin
    Flach, Peter
    Thumim, Joshua
    COMPUTERS IN INDUSTRY, 2019, 105 : 250 - 259
  • [10] Towards Efficient Big Data and Data Analytics: A Review
    Qureshi, Salim Raza
    Gupta, Ankur
    2014 CONFERENCE ON IT IN BUSINESS, INDUSTRY AND GOVERNMENT (CSIBIG), 2014,