Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg

被引:38
作者
Jin, Liming [1 ,2 ]
Zheng, Junsheng [1 ,2 ,3 ]
Wu, Qiang [3 ]
Shellikeri, Annadanesh [3 ]
Yturriaga, Steven [3 ]
Gong, Ruiqi [1 ,2 ]
Huang, Jun [1 ,2 ]
Zheng, Jim P. [2 ,3 ]
机构
[1] Tongji Univ, Clean Energy Automot Engn Ctr, Jiading Campus,4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Tongji Univ, Sch Automot Studies, Jiading Campus,4800 Caoan Rd, Shanghai 201804, Peoples R China
[3] Florida State Univ, Florida A&M Univ, Coll Engn, Dept Elect & Comp Engn, Tallahassee, FL 32304 USA
基金
中国国家自然科学基金;
关键词
Lithium ion hybrid power source; Lithium ion capacitor; High energy density; High power density; Long cycle life; LI-ION; ELECTROCHEMICAL CAPACITORS; CARBON; ELECTRODES; STORAGE; LIFEPO4; SUPERCAPACITORS; BATTERIES; CATHODE;
D O I
10.1016/j.mtener.2017.12.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium ion capacitor (LIC) with high energy density, high power density, as well as long cycle life, is considered as one of the most promising energy storage and conversion system. However, in practical level, the energy density of LIC can hardly breakthrough 20 Wh kg(-1) full cell, which largely limits its applications. Hence, in this study, a new type of hybrid lithium ion power source (hLIPS), which is fabricated using lithium iron phosphate (LFP)/activated carbon (AC) composite cathode and Li doped hard carbon (HC) anode, and characterized in Li-containing organic electrolyte, is proposed to further enhance the energy density of LIC. Based on this design, a prototype pouch cell with a capacity of 300 F at 1 C has been produced. Operating in a range of 2.2-3.8 V, this device with a breakthrough energy density of ca. 30 Wh kg(-1) full cell, high power density of 2000 W kg(-1) full cell, as well as long cycle life over 30000 cycles (90% retention), has enormous prospect to promote the energy density of LIC to enlarge the application field. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 27 条
[1]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[2]   Development and characterization of Li-ion capacitor pouch cells [J].
Cao, W. J. ;
Shih, J. ;
Zheng, J. P. ;
Doung, T. .
JOURNAL OF POWER SOURCES, 2014, 257 :388-393
[3]   Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes [J].
Cao, W. J. ;
Zheng, J. P. .
JOURNAL OF POWER SOURCES, 2012, 213 :180-185
[4]   High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Wen, Jing ;
Zhang, Yuewei ;
Shen, Meiqing ;
Dunn, Bruce ;
Lu, Yunfeng .
ADVANCED MATERIALS, 2011, 23 (06) :791-+
[5]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[6]   Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries [J].
Du Pasquier, A ;
Plitz, I ;
Gural, J ;
Badway, F ;
Amatucci, GG .
JOURNAL OF POWER SOURCES, 2004, 136 (01) :160-170
[7]  
Kim HS, 2017, NAT MATER, V16, P454, DOI [10.1038/NMAT4810, 10.1038/nmat4810]
[8]   Electrochemical kinetics of nanostructure LiFePO4/graphitic carbon electrodes [J].
Kisu, Kazuaki ;
Iwama, Etsuro ;
Naoi, Wako ;
Simon, Patrice ;
Naoi, Katsuhiko .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 72 :10-14
[9]   Activated Carbon from Biomass Transfer for High-Energy Density Lithium-Ion Supercapacitors [J].
Li, Bing ;
Dai, Fang ;
Xiao, Qiangfeng ;
Yang, Li ;
Shen, Jingmei ;
Zhang, Cunman ;
Cai, Mei .
ADVANCED ENERGY MATERIALS, 2016, 6 (18)
[10]   Nitrogen-doped activated carbon for a high energy hybrid supercapacitor [J].
Li, Bing ;
Dai, Fang ;
Xiao, Qiangfeng ;
Yang, Li ;
Shen, Jingmei ;
Zhang, Cunman ;
Cai, Mei .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :102-106