Image Recognition in Analog VLSI with On-Chip Learning

被引:0
作者
Carvajal, Gonzalo [1 ]
Valenzuela, Waldo [1 ]
Figueroa, Miguel [1 ]
机构
[1] Univ Concepcion, Dept Elect Engn, Concepcion, Chile
来源
ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I | 2009年 / 5768卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an analog-VLSI neural network for image recognition which features a dimensionality reduction network and a classification stage. We implement local learning rules to train the network on chip or program the coefficients from a computer, while compensating for the negative effects of device mismatch and circuit nonlinearity. Our experimental results show that the circuits perform closely to equivalent software implementations, reaching 87% accuracy for face classification and 89% for handwritten digit classification. The circuit dissipates 20mW and occupies 2.5mm(2) of die area in a 0.35 mu m CMOS process.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 10 条
[1]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[2]  
CARVAJAL G, 2006, INT C ART NEUR NETW, P963
[3]  
CARVAJAL G, 2008, ADV NEURAL INFORM PR, V20, P225
[4]  
Delbruck T., 1991, IJCNN-91-Seattle: International Joint Conference on Neural Networks (Cat. No.91CH3049-4), P475, DOI 10.1109/IJCNN.1991.155225
[5]  
Diamantaras K. I., 2001, PRINCIPAL COMPONENT
[6]  
DONCKERS N, 1999, MICRONEURO 1999, P360
[7]  
Figueroa M., 2005, ADV NEURAL INFORM PR, V17
[8]  
OH BJ, 2005, IEC PRAGUE, P255
[9]  
Prasanna CSS, 2005, I CONF VLSI DESIGN, P795
[10]   Low cost FPGA-based highly accurate face recognition system using combined wavelets with subspace methods [J].
Shams, Nasim ;
Hosseini, Iraj ;
Sadri, Mohammad Sadegh ;
Azarnasub, Ehsan .
2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, :2077-+