Mapping Alzheimer's disease progression in 1309 MRI scans: Power estimates for different inter-scan intervals

被引:70
作者
Hua, Xue [1 ]
Lee, Suh [1 ]
Hibar, Derrek P. [1 ]
Yanovsky, Igor [3 ]
Leow, Alex D. [1 ,2 ]
Toga, Arthur W. [1 ]
Jack, Clifford R., Jr. [4 ]
Bernstein, Matt A. [4 ]
Reiman, Eric M. [5 ]
Harvey, Danielle J. [6 ]
Kornak, John [8 ,13 ]
Schuff, Norbert [7 ,8 ]
Alexander, Gene E. [11 ,12 ]
Weiner, Michael W. [7 ,8 ,9 ,10 ]
Thompson, Paul M. [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Resnick Neuropsychiat Hosp, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Mayo Clin, Dept Radiol, Rochester, MN USA
[5] Univ Arizona, Dept Psychiat, Banner Alzheimers Inst, Phoenix, AZ USA
[6] UCD Sch Med, Dept Publ Hlth Sci, Davis, CA USA
[7] Vet Affairs Med Ctr, San Francisco, CA 94121 USA
[8] UCSF, Dept Radiol & Biomed Imaging, San Francisco, CA USA
[9] UCSF, Dept Med, San Francisco, CA USA
[10] UCSF, Dept Psychiat, San Francisco, CA USA
[11] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA
[12] Univ Arizona, Evelyn F McKnight Brain Inst, Tucson, AZ USA
[13] UCSF, Dept Epidemiol & Biostat, San Francisco, CA USA
基金
美国国家卫生研究院;
关键词
MILD COGNITIVE IMPAIRMENT; TENSOR-BASED MORPHOMETRY; VOXEL-BASED MORPHOMETRY; MATTER STRUCTURAL INTEGRITY; WHITE-MATTER; BRAIN ATROPHY; HIPPOCAMPAL ATROPHY; FUNCTIONAL CONNECTIVITY; CORTICAL THICKNESS; MYELIN BREAKDOWN;
D O I
10.1016/j.neuroimage.2010.01.104
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroimaging centers and pharmaceutical companies are working together to evaluate treatments that might slow the progression of Alzheimer's disease (AD), a common but devastating late-life neuropathology. Recently, automated brain mapping methods, such as tensor-based morphometry (TBM) of structural MRI, have outperformed cognitive measures in their precision and power to track disease progression, greatly reducing sample size estimates for drug trials. In the largest TBM study to date, we studied how sample size estimates for tracking structural brain changes depend on the time interval between the scans (6-24 months). We analyzed 1309 brain scans from 91 probable AD patients (age at baseline: 75.4 +/- 7.5 years) and 189 individuals with mild cognitive impairment (MCI; 74.6 +/- 7.1 years), scanned at baseline, 6, 12, 18. and 24 months. Statistical maps revealed 3D patterns of brain atrophy at each follow-up scan relative to the baseline; numerical summaries were used to quantify temporal lobe atrophy within a statistically-defined region-of-interest. Power analyses revealed superior sample size estimates over traditional clinical measures. Only 80, 46, and 39 AD patients were required for a hypothetical clinical trial, at 6, 12, and 24 months respectively, to detect a 25% reduction in average change using a two-sided test (alpha=0.05, power = 80%). Correspondingly, 106, 79, and 67 subjects were needed for an equivalent MCI trial aiming for earlier intervention. A 24-month trial provides most power, except when patient attrition exceeds 15-16%/year, in which case a 12-month trial is optimal. These statistics may facilitate clinical trial design using voxel-based brain mapping methods such as IBM. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 128 条
  • [31] Automated ventricular mapping alignment reveals genetic effects with multi-atlas fluid image in Alzheimer's disease
    Chou, Yi-Yu
    Lepore, Natasha
    de Zubicaray, Greig I.
    Cannichael, Owen T.
    Becker, James T.
    Toga, Arthur W.
    Thompson, Paul M.
    [J]. NEUROIMAGE, 2008, 40 (02) : 615 - 630
  • [32] Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer's disease, mild cognitive impairment and elderly controls
    Chou, Yi-Yu
    Lepore, Natasha
    Avedissian, Christina
    Madsen, Sarah K.
    Parikshak, Neelroop
    Hua, Xue
    Shaw, Leslie M.
    Trojanowski, John Q.
    Weiner, Michael W.
    Toga, Arthur W.
    Thompson, Paul M.
    [J]. NEUROIMAGE, 2009, 46 (02) : 394 - 410
  • [33] CHOU YY, 2009, SPIE MED IMAGING
  • [34] A unified statistical approach to deformation-based morphometry
    Chung, MK
    Worsley, KJ
    Paus, T
    Cherif, C
    Collins, DL
    Giedd, JN
    Rapoport, JL
    Evanst, AC
    [J]. NEUROIMAGE, 2001, 14 (03) : 595 - 606
  • [35] Comparison of phantom and registration scaling corrections using the ADNI cohort
    Clarkson, Matthew J.
    Ourselin, Sebastien
    Nielsen, Casper
    Leung, Kelvin K.
    Barnes, Josephine
    Whitwell, Jennifer L.
    Gunter, Jeffrey L.
    Hill, Derek L. G.
    Weiner, Michael W.
    Jack, Clifford R., Jr.
    Fox, Nick C.
    [J]. NEUROIMAGE, 2009, 47 (04) : 1506 - 1513
  • [36] COCKRELL JR, 1988, PSYCHOPHARMACOL BULL, V24, P689
  • [37] AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE
    COLLINS, DL
    NEELIN, P
    PETERS, TM
    EVANS, AC
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) : 192 - 205
  • [38] Voxel-based morphometry using the RAVENS maps: Methods and validation using simulated longitudinal atrophy
    Davatzikos, C
    Genc, A
    Xu, DR
    Resnick, SM
    [J]. NEUROIMAGE, 2001, 14 (06) : 1361 - 1369
  • [39] Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
    Davatzikos, Christos
    Fan, Yong
    Wu, Xiaoying
    Shen, Dinggang
    Resnick, Susan M.
    [J]. NEUROBIOLOGY OF AGING, 2008, 29 (04) : 514 - 523
  • [40] The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals
    Dickerson, Bradford C.
    Bakkour, Akram
    Salat, David H.
    Feczko, Eric
    Pacheco, Jenni
    Greve, Douglas N.
    Grodstein, Fran
    Wright, Christopher I.
    Blacker, Deborah
    Rosas, H. Diana
    Sperling, Reisa A.
    Atri, Alireza
    Growdon, John H.
    Hyman, Bradley T.
    Morris, John C.
    Fischl, Bruce
    Buckner, Randy L.
    [J]. CEREBRAL CORTEX, 2009, 19 (03) : 497 - 510