NUMERICAL STUDY OF 3-D ANISOTROPIC PIEZOELECTRIC MATERIALS BY BOUNDARY ELEMENT METHOD BASED ON A NEW GREEN FUNCTION

被引:0
作者
Lei, Jun [1 ]
Liu, Sheng-wei [1 ]
Sun, Peng-bo [1 ]
Xie, Long-tao [2 ]
机构
[1] Beijing Univ Technol, Dept Engn Mech, Beijing 100124, Peoples R China
[2] Univ Siegen, Dept Civil Engn, D-57068 Siegen, Germany
来源
PROCEEDINGS OF 2016 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS (SPAWDA) | 2016年
关键词
Piezoelectric materials; Green function; Boundary element method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an explicit Green function in terms of the Stroh eigenvalues and eigenvectors for generally anisotropic piezoelectric materials is derived. Based on this, the displacement boundary integral equation is solved numerically by a collocation method. The new type of Green function for 3-D anisotropic piezoelectric materials is successfully incorporated to a boundary element program. By using the developed boundary element program, the mechanical and electric variables of 3-D piezoelectric cylinder are obtained and the results are compared with the corresponding analytical solutions and other numerical results by FEM. These results are agreed very well, which shows the precision and efficiency of the present method.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 9 条
[1]   Green's function of anisotropic piezoelectricity [J].
Akamatsu, M ;
Tanuma, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1958) :473-487
[2]   GREEN-FUNCTIONS AND THE NONUNIFORM TRANSFORMATION PROBLEM IN A PIEZOELECTRIC MEDIUM [J].
CHEN, TY .
MECHANICS RESEARCH COMMUNICATIONS, 1993, 20 (03) :271-278
[3]   NUMERICAL EVALUATION OF DERIVATIVES OF THE ANISOTROPIC PIEZOELECTRIC GREEN-FUNCTIONS [J].
CHEN, TY ;
LIN, FZ .
MECHANICS RESEARCH COMMUNICATIONS, 1993, 20 (06) :501-506
[4]  
Deeg W. F. J., 1980, THESIS
[5]   The fundamental solutions for transversely isotropic piezoelectricity and boundary element method [J].
Ding, HJ ;
Liang, JA .
COMPUTERS & STRUCTURES, 1999, 71 (04) :447-455
[6]   Green's functions for transversely isotropic piezoelectric solids [J].
Dunn, ML ;
Wienecke, HA .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (30) :4571-4581
[7]  
Hwu C, 2010, ANISOTROPIC ELASTIC PLATES, P1, DOI 10.1007/978-1-4419-5915-7
[8]   UNIFIED 6-DIMENSIONAL TREATMENT OF ELASTIC GREENS FUNCTIONS AND DISLOCATIONS [J].
MALEN, K .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1971, 44 (02) :661-&
[9]  
Xie LT, 2014, INT C BOUND EL MESH, P15