Seed Coat Cracking of Soybean (Glycine max [L.] Merr.) After Soaking and Cooking

被引:2
|
作者
Yasui, Takeshi [1 ]
Toda, Kyoko [1 ]
Yamada, Tetsuya [1 ]
Yumoto, Setsuzo [1 ]
Takahashi, Koji [1 ]
Takahashi, Motoki [1 ]
Hajika, Makita [1 ]
机构
[1] NARO, Inst Crop Sci, 1-2,Kan Nondai 2 Chome, Tsukuba, Ibaraki 3058518, Japan
关键词
CELL-WALL PROTEINS; QTL ANALYSIS; PERMEABILITY; WATER; NET;
D O I
10.1094/CCHEM-12-16-0284-R
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Seed coat cracking after soaking (SCAS) and after cooking (SCAC) are unfavorable traits associated with soybeans for food uses, such as cooked and seasoned beans (nimame) and fermented steamed beans (natto) because they cause an inferior appearance of the products and clogging of the production lines. The variation and causes of SCAS and SCAC among cultivars have not yet been clarified, but if they are determined genetically, genetic modification could be possible. Cultivars showed considerable variations in SCAS and SCAC. Significantly positive seasonal correlations of SCAS (Spearman's rank correlation coefficient, rho = 0.518) and of SCAC (rho = 0.681) were observed among recombinant inbred lines (RILs) derived from the cross between cultivars Nattoshoryu and Hyokeikuro 3. Quantitative trait locus (QTL) analyses and statistical analyses using generalized linear models showed that QTLs for SCAS (qSCAS1, qSCAS2, and qSCAS3) and SCAC (qSCAC1 and qSCAC2) were located on chromosomes 4 (linkage group [LG]: C1), 6 (LG: C2), and 8 (LG: A2) of the RILs. Interactions between QTLs were also observed. SCAS and SCAC are traits controlled by QTLs, which could provide significant insight into their causes and mechanisms. These undesirable characteristics could be improved through breeding.
引用
收藏
页码:717 / 722
页数:6
相关论文
共 50 条
  • [1] Effect of Vacuum Soaking on the Properties of Soybean (Glycine max (L.) Merr.)
    Xiao, Gongnian
    Gong, Jinyan
    Ge, Qing
    You, Yuru
    INTERNATIONAL JOURNAL OF FOOD ENGINEERING, 2015, 11 (01) : 151 - 155
  • [2] Effect of seed coating on the yield of soybean Glycine max (L.) Merr.
    Jarecki, Waclaw
    Wietecha, Justyna
    PLANT SOIL AND ENVIRONMENT, 2021, 67 (08) : 468 - 473
  • [3] Recombination hotspots in soybean [Glycine max (L.) Merr.]
    McConaughy, Samantha
    Amundsen, Keenan
    Song, Qijian
    Pantalone, Vince
    Hyten, David
    G3-GENES GENOMES GENETICS, 2023, 13 (06):
  • [4] Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress
    Courtney P. Leisner
    Craig R. Yendrek
    Elizabeth A. Ainsworth
    BMC Plant Biology, 17
  • [5] Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress
    Leisner, Courtney P.
    Yendrek, Craig R.
    Ainsworth, Elizabeth A.
    BMC PLANT BIOLOGY, 2017, 17
  • [6] Systemic Uptake of Fluorescent Tracers by Soybean (Glycine max (L.) Merr.) Seed and Seedlings
    Wang, Zhen
    Amirkhani, Masoume
    Avelar, Suemar A. G.
    Yang, Daibin
    Taylor, Alan G.
    AGRICULTURE-BASEL, 2020, 10 (06):
  • [7] QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.)
    W Teng
    Y Han
    Y Du
    D Sun
    Z Zhang
    L Qiu
    G Sun
    W Li
    Heredity, 2009, 102 : 372 - 380
  • [8] EFFECT OF SOWING DATE ON THE YIELD AND SEED QUALITY OF SOYBEAN [GLYCINE MAX (L.) MERR.]
    Jarecki, Waclaw
    Bobrecka-Jamro, Dorota
    JOURNAL OF ELEMENTOLOGY, 2021, 26 (01): : 7 - 18
  • [9] Soybean (Glycine max L. Merr.) seed composition response to soil flooding stress
    VanToai, Tara T.
    Lee, Jeong-Dong
    Goulart, Patricia F. P.
    Shannon, J. Grover
    Alves, J. Donizeti
    Nguyen, Henry T.
    Yu, Oliver
    Rahman, Mohammed
    Islam, Rafiq
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (01): : 795 - 801
  • [10] Detection of QTL underlying seed quality components in soybean [Glycine max (L.) Merr.]
    Akond, Masum
    Yuan, Jiazheng
    Liu, Shiming
    Kantartzi, Stella K.
    Meksem, Khalid
    Bellaloui, Nacer
    Lightfoot, David A.
    Kassem, My Abdelmajid
    CANADIAN JOURNAL OF PLANT SCIENCE, 2018, 98 (04) : 881 - 888