Infinite sequence of Poincare group extensions: structure and dynamics

被引:47
作者
Bonanos, Sotirios [1 ]
Gomis, Joaquim [2 ,3 ,4 ]
机构
[1] NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece
[2] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
[3] Univ Barcelona, ICCUB, E-08028 Barcelona, Spain
[4] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan
关键词
GAUGE FIELD GEOMETRY; HARMONIC ANALYTICITIES; PARTICLES; COMPLEX; KAHLER;
D O I
10.1088/1751-8113/43/1/015201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the structure and dynamics of the infinite sequence of extensions of the Poincare algebra whose method of construction was described in a previous paper (Bonanos and Gomis J. Phys. A: Math. Theor. 42 (2009) 145206 (arXiv: hep-th/0808.2243)). We give explicitly the Maurer-Cartan (MC) 1-forms of the extended Lie algebras up to level 3. Using these forms and introducing a corresponding set of new dynamical couplings, we construct an invariant Lagrangian, which describes the dynamics of a distribution of charged particles in an external electromagnetic field. At each extension, the distribution is approximated by a set of moments about the world line of its center of mass and the field by its Taylor series expansion about the same line. The equations of motion after the second extensions contain back-reaction terms of the moments on the world line.
引用
收藏
页数:16
相关论文
共 24 条
[1]  
ALDAYA V, 1986, J GEOM PHYS, V3, P303
[2]   GROUP-THEORETICAL ANALYSIS OF ELEMENTARY PARTICLES IN AN EXTERNAL ELECTROMAGNETIC FIELD .1. RELATIVISTIC PARTICLE IN A CONSTANT AND UNIFORM FIELD [J].
BACRY, H ;
COMBE, P ;
RICHARD, JL .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 67 (02) :267-+
[3]   MINIMAL ELECTROMAGNETIC COUPLING SCHEMES .2. RELATIVISTIC AND NON-RELATIVISTIC MAXWELL GROUPS [J].
BECKERS, J ;
HUSSIN, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (05) :1295-1298
[4]  
BONANOS S, MATH ENHANCEMENT
[5]   A note on the Chevalley-Eilenberg cohomology for the Galilei and Poincare algebras [J].
Bonanos, Sotirios ;
Gomis, Joaquim .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (14)
[6]   STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS .2. [J].
CALLAN, CG ;
COLEMAN, S ;
WESS, J ;
ZUMINO, B .
PHYSICAL REVIEW, 1969, 177 (5P1) :2247-&
[7]   GAUGE-INVARIANT FORMULATIONS OF LINEAL GRAVITIES [J].
CANGEMI, D ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :233-236
[8]   STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS .I. [J].
COLEMAN, S ;
WESS, J ;
ZUMINO, B .
PHYSICAL REVIEW, 1969, 177 (5P1) :2239-&
[9]   Cosmological billiards [J].
Damour, T ;
Henneaux, M ;
Nicolai, H .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (09) :R145-R200
[10]   Runaway dilaton and equivalence principle violations [J].
Damour, T ;
Piazza, F ;
Veneziano, G .
PHYSICAL REVIEW LETTERS, 2002, 89 (08) :081601/1-081601/4