Compositional optimization of hard-magnetic phases with machine-learning models

被引:47
作者
Moeller, Johannes J. [1 ]
Koerner, Wolfgang [1 ]
Krugel, Georg [1 ]
Urban, Daniel F. [1 ]
Elsaesser, Christian [1 ,2 ]
机构
[1] Fraunhofer Inst Mech Mat IWM, Wohlerstr 11, D-79108 Freiburg, Germany
[2] Univ Freiburg, Freiburg Mat Res Ctr, Stefan Meier Str 21, D-79104 Freiburg, Germany
关键词
Permanent magnets; Machine learning; Density functional theory; ANISOTROPY; MOMENTS;
D O I
10.1016/j.actamat.2018.03.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine Learning (ML) plays an increasingly important role in the discovery and design of new materials. In this paper, we demonstrate the potential of ML for materials research using hard-magnetic phases as an illustrative case. We build kernel-based ML models to predict optimal chemical compositions for new permanent magnets, which are key components in many green-energy technologies. The magnetic-property data used for training and testing the ML models are obtained from a combinatorial high-throughput screening based on density-functional theory calculations. Our straightforward choice of describing the different configurations enables the subsequent use of the ML models for compositional optimization and thereby the prediction of promising substitutes of state-of-the-art magnetic materials like Nd2Fe14B with similar intrinsic hard-magnetic properties but a lower amount of critical rare-earth elements. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 63 条
[21]  
Coey J.M.D., 2001, Magnetism and magnetic materials, V1st, DOI DOI 10.1017/CBO9780511845000
[22]   SOME NOVEL TERNARY THMN12-TYPE COMPOUNDS [J].
DEMOOIJ, DB ;
BUSCHOW, KHJ .
JOURNAL OF THE LESS-COMMON METALS, 1988, 136 (02) :207-215
[23]   Ab initio screening methodology applied to the search for new permanent magnetic materials [J].
Drebov, Nedko ;
Martinez-Limia, Alberto ;
Kunz, Lothar ;
Gola, Adrien ;
Shigematsu, Takashi ;
Eckl, Thomas ;
Gumbsch, Peter ;
Elsaesser, Christian .
NEW JOURNAL OF PHYSICS, 2013, 15
[24]   Crystal structure representations for machine learning models of formation energies [J].
Faber, Felix ;
Lindmaa, Alexander ;
von Lilienfeld, O. Anatole ;
Armiento, Rickard .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1094-1101
[25]   Machine Learning Energies of 2 Million Elpasolite (ABC2D6) Crystals [J].
Faber, Felix A. ;
Lindmaa, Alexander ;
von Lilienfeld, O. Anatole ;
Armiento, Rickard .
PHYSICAL REVIEW LETTERS, 2016, 117 (13)
[26]   AB-INITIO ELECTRON THEORY FOR HARD-MAGNETIC RARE-EARTH-TRANSITION-METAL INTERMETALLICS [J].
FAHNLE, M ;
HUMMLER, K ;
LIEBS, M ;
BEUERLE, T .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1993, 57 (01) :67-76
[27]   Big Data of Materials Science: Critical Role of the Descriptor [J].
Ghiringhelli, Luca M. ;
Vybiral, Jan ;
Levchenko, Sergey V. ;
Draxl, Claudia ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[28]   Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives [J].
Giri, Brijesh Kumar ;
Hakanen, Jussi ;
Miettinen, Kaisa ;
Chakraborti, Nirupam .
APPLIED SOFT COMPUTING, 2013, 13 (05) :2613-2623
[29]  
Hastie T, 2009, SPRINGER SERIES STAT, V2nd
[30]   R2FE14B MATERIALS - INTRINSIC-PROPERTIES AND TECHNOLOGICAL ASPECTS [J].
HERBST, JF .
REVIEWS OF MODERN PHYSICS, 1991, 63 (04) :819-898