Sea surface temperature patterns in the Tropical Atlantic: Principal component analysis and nonlinear principal component analysis

被引:4
作者
Kenfack, Christian Sadem [1 ,2 ,3 ]
Mkankam, Francois Kamga [2 ]
Alory, Gael [4 ]
du Penhoat, Yves [5 ]
Hounkonnou, Mahouton Norbert [1 ]
Vondou, Derbetini Appolinaire [2 ]
Nfor, Bawe Gerard, Jr. [3 ]
机构
[1] Univ Abomey Calavi, Int Chair Math Phys & Applicat, Cotonou, Benin
[2] Univ Yaounde I, Dept Phys, Lab Environm Modelling & Atmospher Phys, Yaounde, Cameroon
[3] Univ Dschang, Fac Sci, Dept Phys, MMSL, Dschang, Cameroon
[4] LEGOS, Toulouse, France
[5] LEGOS, IRD, Toulouse, France
来源
TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES | 2017年 / 28卷 / 03期
关键词
PCA; NLPCA; SST; Tropical Ocean; WEST-AFRICAN MONSOON; COLD-TONGUE; DIMENSIONALITY REDUCTION; CLIMATE VARIABILITY; NEURAL-NETWORKS; REGIONAL MODEL; EQUATORIAL; OCEAN; MECHANISMS; EVENTS;
D O I
10.3319/TAO.2016.08.29.01
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The tropical Atlantic Ocean exhibits several modes of interannual variability such as the equatorial (or Atlantic Nino) mode, and meridional (or Atlantic dipole) mode. Nonlinear principal component analysis (NLPCA) is applied on detrended monthly Sea Surface Temperature Anomaly (SSTA) data from the tropical Atlantic Ocean (30 degrees W - 20 degrees E, 26 degrees S - 22 degrees N) for the period 1950 to 2005. The objective is to compare the modes extracted through this statistical analysis to those previously extracted through simpler principal component analysis (PCA). It is shown that the first NLPCA mode explains 38% of the total SST variance compared to 36% by the first PCA while the second NLPCA mode explains 22% of the total SST variance compared to 16% by the second PCA. The first two NLPCA modes marginally explain more of the total data variance than the first two PCA modes. Our analysis confirms results from previous studies and, in addition, shows that the Atlantic El Nino structure is spatially more stable than the Atlantic dipole structure.
引用
收藏
页码:395 / 410
页数:16
相关论文
共 88 条
[21]   REPLICATOR NEURAL NETWORKS FOR UNIVERSAL OPTIMAL SOURCE-CODING [J].
HECHTNIELSEN, R .
SCIENCE, 1995, 269 (5232) :1860-1863
[22]  
HIRST AC, 1983, J PHYS OCEANOGR, V13, P1146, DOI 10.1175/1520-0485(1983)013<1146:AOMOCA>2.0.CO
[23]  
2
[24]   ATMOSPHERIC CONDITIONS IN THE ATLANTIC SECTOR DURING 1983 AND 1984 [J].
HOREL, JD ;
KOUSKY, VE ;
KAGANO, MT .
NATURE, 1986, 322 (6076) :248-251
[25]  
HOUGHTON RW, 1992, J CLIMATE, V5, P765, DOI 10.1175/1520-0442(1992)005<0765:COLFSS>2.0.CO
[26]  
2
[27]   Nonlinear principal component analysis of noisy data [J].
Hsieh, William W. .
NEURAL NETWORKS, 2007, 20 (04) :434-443
[28]   Nonlinear multivariate and time series analysis by neural network methods [J].
Hsieh, WW .
REVIEWS OF GEOPHYSICS, 2004, 42 (01) :RG10031-25
[29]   Nonlinear principal component analysis by neural networks [J].
Hsieh, WW .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2001, 53 (05) :599-615
[30]  
Huang BH, 1997, J PHYS OCEANOGR, V27, P1693, DOI 10.1175/1520-0485(1997)027<1693:COTIAD>2.0.CO