Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis

被引:125
|
作者
Wang, Wuyi
Esch, Jeff J.
Shiu, Shin-Han
Agula, Hasi
Binder, Brad M.
Chang, Caren
Patterson, Sara E. [1 ]
Bleecker, Anthony B.
机构
[1] Univ Wisconsin, Dept Hort, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA
[3] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[4] Univ Maryland, Dept Mol Genet & Cell Biol, College Pk, MD 20742 USA
来源
PLANT CELL | 2006年 / 18卷 / 12期
关键词
D O I
10.1105/tpc.106.044537
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ethylene binding domain (EBD) of the Arabidopsis thaliana ETR1 receptor is modeled as three membrane-spanning helices. We surveyed ethylene binding activity in different kingdoms and performed a bioinformatic analysis of the EBD. Ethylene binding is confined to land plants, Chara, and a group of cyanobacteria but is largely absent in other organisms, consistent with our finding that EBD-like sequences are overrepresented among plant and cyanobacterial species. We made amino acid substitutions in 37 partially or completely conserved residues of the EBD and assayed their effects on ethylene binding and signaling. Mutations primarily in residues in Helices I and II midregions eliminated ethylene binding and conferred constitutive signaling, consistent with the inverse-agonist model of ethylene receptor signaling and indicating that these residues define the ethylene binding pocket. The largest class of mutations, clustered near the cytoplasmic ends of Helices I and III, gave normal ethylene binding activity yet still conferred constitutive signaling. Therefore, these residues may play a role in turning off the signal transmitter domain of the receptor. By contrast, only two mutations were loss of function with respect to signaling. These findings yield insight into the structure and function of the EBD and suggest a conserved role of the EBD as a negative regulator of the signal transmitter domain.
引用
收藏
页码:3429 / 3442
页数:14
相关论文
共 50 条
  • [1] Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain
    Stephan Schott-Verdugo
    Lena Müller
    Elisa Classen
    Holger Gohlke
    Georg Groth
    Scientific Reports, 9
  • [2] Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain
    Schott-Verdugo, Stephan
    Mueller, Lena
    Classen, Elisa
    Gohlke, Holger
    Groth, Georg
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis
    Azhar, Beenish J.
    Abbas, Safdar
    Aman, Sitwat
    Yamburenko, Maria, V
    Chen, Wei
    Mueller, Lena
    Uzun, Buket
    Jewell, David A.
    Dong, Jian
    Shakeel, Samina N.
    Groth, Georg
    Binder, Brad M.
    Grigoryan, Gevorg
    Schaller, Eric
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (23)
  • [4] Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1
    Dong, Chun-Hai
    Jang, Mihue
    Scharein, Benjamin
    Malach, Anuschka
    Rivarola, Maximo
    Liesch, Jeff
    Groth, Georg
    Hwang, Inhwan
    Chang, Caren
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (52) : 40706 - 40713
  • [5] The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1
    Müller-Dieckmann, HJ
    Grantz, AA
    Kim, SH
    STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (12): : 1547 - 1556
  • [6] A copper cofactor for the ethylene receptor ETR1 from Arabidopsis
    Rodriguez, FI
    Esch, JJ
    Hall, AE
    Binder, BM
    Schaller, GE
    Bleecker, AB
    SCIENCE, 1999, 283 (5404) : 996 - 998
  • [7] Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis
    Chen, YF
    Randlett, MD
    Findell, JL
    Schaller, GE
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) : 19861 - 19866
  • [8] Ethylene controls autophosphorylation of the histidine kinase domain in ethylene receptor ETR1
    Voet-van-Vormizeele, Jan
    Groth, Georg
    MOLECULAR PLANT, 2008, 1 (02) : 380 - 387
  • [9] Crystal structure of the catalytic domain of the ethylene receptor ETR1 from Arabidopsis thaliana
    Panneerselvam, Saravanan
    Dieckmann, Juchen Mueller
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S237 - S237
  • [10] Histidine Kinase Activity of the Ethylene Receptor ETR1 Facilitates the Ethylene Response in Arabidopsis
    Hall, Brenda P.
    Shakeel, Samina N.
    Amir, Madiha
    Haq, Noor Ul
    Qu, Xiang
    Schaller, G. Eric
    PLANT PHYSIOLOGY, 2012, 159 (02) : 682 - 695