Adaptive finite element approximation for distributed elliptic optimal control problems

被引:236
作者
Li, R [1 ]
Liu, WB
Ma, HP
Tang, T
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Univ Kent, CBS, Canterbury CT2 7NF, Kent, England
[3] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
[4] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[5] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
mesh adaptivity; optimal control; a posteriori error estimate; finite element method;
D O I
10.1137/S0363012901389342
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, sharp a posteriori error estimators are derived for a class of distributed elliptic optimal control problems. These error estimators are shown to be useful in adaptive finite element approximation for the optimal control problems and are implemented in the adaptive approach. Our numerical results indicate that the sharp error estimators work satisfactorily in guiding the mesh adjustments and can save substantial computational work.
引用
收藏
页码:1321 / 1349
页数:29
相关论文
共 47 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]   Comparison of conditions V=0 and A center dot n=0 on conductor boundaries in A,V-A-Psi formulations [J].
Alotto, P ;
Molfino, P ;
Nervi, M ;
Fernandes, P .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) :800-803
[3]   CONVERGENCE OF FINITE-ELEMENT APPROXIMATIONS TO STATE CONSTRAINED CONVEX PARABOLIC BOUNDARY CONTROL-PROBLEMS [J].
ALT, W ;
MACKENROTH, U .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) :718-736
[4]   MESH REFINEMENT FOR SHAPE OPTIMIZATION [J].
BANICHUK, NV ;
BARTHOLD, FJ ;
FALK, A ;
STEIN, E .
STRUCTURAL OPTIMIZATION, 1995, 9 (01) :46-51
[5]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[6]   A POSTERIORI ERROR-ESTIMATES FOR THE ADAPTATIVE COMPUTATION OF QUASINEWTONIAN FLOWS [J].
BARANGER, J ;
ELAMRI, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (01) :31-47
[7]  
BARRETT JW, 1994, PITMAN RES, V303, P1
[8]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[9]  
Becker R, 1998, ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, P147
[10]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems