Adaptive finite element approximation for distributed elliptic optimal control problems

被引:236
|
作者
Li, R [1 ]
Liu, WB
Ma, HP
Tang, T
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Univ Kent, CBS, Canterbury CT2 7NF, Kent, England
[3] Univ Kent, Inst Math & Stat, Canterbury CT2 7NF, Kent, England
[4] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[5] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
mesh adaptivity; optimal control; a posteriori error estimate; finite element method;
D O I
10.1137/S0363012901389342
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, sharp a posteriori error estimators are derived for a class of distributed elliptic optimal control problems. These error estimators are shown to be useful in adaptive finite element approximation for the optimal control problems and are implemented in the adaptive approach. Our numerical results indicate that the sharp error estimators work satisfactorily in guiding the mesh adjustments and can save substantial computational work.
引用
收藏
页码:1321 / 1349
页数:29
相关论文
共 50 条
  • [1] Finite element approximation of elliptic dirichlet optimal control problems
    Vexler, B.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (7-8) : 957 - 973
  • [2] An adaptive finite element method for distributed elliptic optimal control problems with variable energy regularization
    Langer, Ulrich
    Loescher, Richard
    Steinbach, Olaf
    Yang, Huidong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 160 : 1 - 14
  • [3] Robust error estimates for the finite element approximation of elliptic optimal control problems
    Gong, Wei
    Yan, Ningning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1370 - 1381
  • [4] Robust Finite Element Discretization and Solvers for Distributed Elliptic Optimal Control Problems
    Langer, Ulrich
    Loescher, Richard
    Steinbach, Olaf
    Yang, Huidong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (04) : 989 - 1005
  • [5] Robust finite element discretization and solvers for distributed elliptic optimal control problems
    Langer, Ulrich
    Löscher, Richard
    Steinbach, Olaf
    Yang, Huidong
    arXiv, 2022,
  • [6] Adaptive finite element method for elliptic optimal control problems: convergence and optimality
    Wei Gong
    Ningning Yan
    Numerische Mathematik, 2017, 135 : 1121 - 1170
  • [7] Adaptive finite element method for elliptic optimal control problems: convergence and optimality
    Gong, Wei
    Yan, Ningning
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1121 - 1170
  • [8] Adaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints
    Hoppe, Ronald H. W.
    Yousept, Irwin
    BIT NUMERICAL MATHEMATICS, 2015, 55 (01) : 255 - 277
  • [9] Adaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints
    Ronald H. W. Hoppe
    Irwin Yousept
    BIT Numerical Mathematics, 2015, 55 : 255 - 277
  • [10] SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 697 - 711