Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific

被引:20
作者
Jensen, Eric J. [1 ]
Thornberry, Troy D. [2 ,3 ]
Rollins, Andrew W. [2 ,3 ]
Ueyama, Rei [1 ]
Pfister, Leonhard [1 ]
Bui, Theopaul [1 ]
Diskin, Glenn S. [4 ]
DiGangi, Joshua P. [4 ]
Hintsa, Eric [3 ,5 ]
Gao, Ru-Shan [2 ]
Woods, Sarah [6 ]
Lawson, R. Paul [6 ]
Pittman, Jasna [7 ,8 ]
机构
[1] NASA, Ames Res Ctr, Atmospher Sci Branch, Moffett Field, CA 94035 USA
[2] NOAA, Earth Syst Res Lab, Chem Sci Div, Boulder, CO USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA
[4] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23665 USA
[5] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA
[6] SPEC Inc, Boulder, CO USA
[7] Northwest Res Assoc, Seattle, WA USA
[8] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
tropopause; water vapor; humidity; cirrus; STRATOSPHERIC WATER-VAPOR; CIRRUS CLOUDS; AIRCRAFT OBSERVATIONS; UPPER TROPOSPHERE; OZONE; ICE; DEHYDRATION; TRANSPORT; CALIBRATION; HYGROMETER;
D O I
10.1002/2017JD026632
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, similar or equal to 14-18km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.
引用
收藏
页码:6094 / 6107
页数:14
相关论文
共 41 条
  • [1] The quasi-biennial oscillation
    Baldwin, MP
    Gray, LJ
    Dunkerton, TJ
    Hamilton, K
    Haynes, PH
    Randel, WJ
    Holton, JR
    Alexander, MJ
    Hirota, I
    Horinouchi, T
    Jones, DBA
    Kinnersley, JS
    Marquardt, C
    Sato, K
    Takahashi, M
    [J]. REVIEWS OF GEOPHYSICS, 2001, 39 (02) : 179 - 229
  • [2] Air parcel trajectory dispersion near the tropical tropopause
    Bergman, John W.
    Jensen, Eric J.
    Pfister, Leonhard
    Bui, Thaopaul V.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (08) : 3759 - 3775
  • [3] Seasonal differences of vertical-transport efficiency in the tropical tropopause layer: On the interplay between tropical deep convection, large-scale vertical ascent, and horizontal circulationes
    Bergman, John W.
    Jensen, Eric J.
    Pfister, Leonhard
    Yang, Qiong
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [4] The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques
    Fahey, D. W.
    Gao, R. -S.
    Moehler, O.
    Saathoff, H.
    Schiller, C.
    Ebert, V.
    Kraemer, M.
    Peter, T.
    Amarouche, N.
    Avallone, L. M.
    Bauer, R.
    Bozoki, Z.
    Christensen, L. E.
    Davis, S. M.
    Durry, G.
    Dyroff, C.
    Herman, R. L.
    Hunsmann, S.
    Khaykin, S. M.
    Mackrodt, P.
    Meyer, J.
    Smith, J. B.
    Spelten, N.
    Troy, R. F.
    Voemel, H.
    Wagner, S.
    Wienhold, F. G.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (09) : 3177 - 3213
  • [5] Tropical ozone as an indicator of deep convection
    Folkins, I
    Braun, C
    Thompson, AM
    Witte, J
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D13): : ACH13 - 1
  • [6] Assessing the climate impact of trends in stratospheric water vapor
    Forster, PMD
    Shine, KP
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (06) : 10 - 1
  • [7] A compact, fast UV photometer for measurement of ozone from research aircraft
    Gao, R. S.
    Ballard, J.
    Watts, L. A.
    Thornberry, T. D.
    Ciciora, S. J.
    McLaughlin, R. J.
    Fahey, D. W.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (09) : 2201 - 2210
  • [8] Radiation balance of the tropical tropopause layer -: art. no. D07103
    Gettelman, A
    Forster, PMD
    Fujiwara, M
    Fu, Q
    Vömel, H
    Gohar, LK
    Johanson, C
    Ammerman, M
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D7)
  • [9] Horizontal transport and the dehydration of the stratosphere
    Holton, JR
    Gettelman, A
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (14) : 2799 - 2802
  • [10] Jensen E, 2004, J GEOPHYS RES-ATMOS, V109, DOI [10.1029/2003JD004022, 10.1029/2004JD004671]