Sulfolane with LiPF6, LiNTf2 and LiBOB - as a non-FInmmable Electrolyte Working in a littjum-ion batteries with a LiNiO2 Cathode

被引:12
作者
Kurc, Beata [1 ]
机构
[1] Poznan Univ Tech, Fac Chem Technol, Inst Chem & Electrochem, Berdychowo 4, PL-60965 Poznan, Poland
关键词
sulfolane; li-ion battery; cathodes: LiNiO2; impedance spectra; ELECTROCHEMICAL PROPERTIES; LITHIUM; PERFORMANCE; TEMPERATURE; GRAPHITE; LIMN2O4; PHASE;
D O I
10.20964/2018.06.46
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiNiO2 was examined as cathode materials for the lithium-ion battery, working with non-flammable electrolyte, obtained by dissolution of solid lithium bis(trifluoromethanesulphonyl)imide (LiNTf2), lithium bis(oxalato)borate (LiBOB) and lithium hexafluorophosphate (LiPF6, Fluka) in sulfolane (TMS) with 10% vinylene carbonate (VC). Apart from the electrochemical tests, it was important to set the flash point. The Li/LiNiO2 cells were tested by cyclic voltammetry, galvanostatic charging/discharging. The LiNiO 2 cathode showed good cyclability and coulombic efficiency for the electrolyte, which contains 1 M LiPF6 in TMS + 10% VC (195 and 140 mAh g(-1) after 20 cycles - C/10). Correspondingly lower capacity was observed for system Li/LiNiO 2 in: 1 M LiNTf 2 in TMS + 10% VC and 1 M LiBOB in TMS + 10% VC. The LiNiO2(solid) + 1 M LiPF6 + TMS + 10% VC system shows a flash point of ca. 160.
引用
收藏
页码:5938 / 5955
页数:18
相关论文
共 37 条
[1]   Thermal behavior of Li1-yNiO2 and the decomposition mechanism [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1998, 109 (3-4) :295-302
[2]   CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD [J].
ARAI, H ;
OKADA, S ;
OHTSUKA, H ;
ICHIMURA, M ;
YAMAKI, J .
SOLID STATE IONICS, 1995, 80 (3-4) :261-269
[3]   LI/LIXNIO2 AND LI/LIXCOO2 RECHARGEABLE SYSTEMS - COMPARATIVE-STUDY AND PERFORMANCE OF PRACTICAL CELLS [J].
BROUSSELY, M ;
PERTON, F ;
LABAT, J ;
STANIEWICZ, RJ ;
ROMERO, A .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :209-216
[4]   Improvement of structural stability of LiMn2O4 cathode material on 55°C cycling by sol-gel coating of LiCoO2 [J].
Cho, J ;
Kim, GB ;
Lim, HS ;
Kim, CS ;
Yoo, SI .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (12) :607-609
[5]   High-performance ZrO2-coated LiNiO2 cathode material [J].
Cho, J ;
Kim, TJ ;
Kim, YJ ;
Park, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A159-A161
[6]  
Cho Y., 2003, CHEM MATER, V12, P3788
[7]   STRUCTURE AND ELECTROCHEMISTRY OF LI1+/-YNIO2 AND A NEW LI2NIO2 PHASE WITH THE NI(OH)2 STRUCTURE [J].
DAHN, JR ;
VONSACKEN, U ;
MICHAL, CA .
SOLID STATE IONICS, 1990, 44 (1-2) :87-97
[8]   Nuclear and magnetic structure of layered LiFe1-xCoxO2 (0 ≤ x ≤ 1) determined by high-resolution neutron diffraction [J].
Douakha, N ;
Holzapfel, M ;
Chappel, E ;
Chouteau, G ;
Croguennec, L ;
Ott, A ;
Ouladdiaf, B .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (02) :406-411
[9]   Determination of the safety level of an advanced lithium ion battery having a nanostructured Sn-C anode, a high voltage LiNi0.5Mn1.5O4 cathode, and a polyvinylidene fluoride-based gel electrolyte [J].
Hassoun, Jusef ;
Reale, Priscilla ;
Panero, Stefania ;
Scrosati, Bruno ;
Wachtler, Mario ;
Fleischhammer, Meike ;
Kasper, Michael ;
Wohlfahrt-Mehrens, Margret .
ELECTROCHIMICA ACTA, 2010, 55 (13) :4194-4200
[10]   A SURVEY OF 1ST-ROW TERNARY OXIDES LISCO2, LICUO2 [J].
HEWSTON, TA ;
CHAMBERLAND, BL .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1987, 48 (02) :97-108