Development of an Efficient 3D Reconstruction Solution from Permissive Open-Source Code

被引:3
作者
Lyra, Victor Gouveia de M. [1 ]
Pinto, Adam H. M. [1 ]
Lima, Gustavo C. R. [1 ]
Lima, Joao Paulo [2 ]
Teichrieb, Veronica [1 ]
Quintino, Jonysberg Peixoto [3 ]
da Silva, Fabio Q. B. [4 ]
Santos, Andre L. M. [4 ]
Pinho, Helder [5 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Voxar Labs, Recife, PE, Brazil
[2] Univ Fed Rural Pernambuco, Dept Comp, Recife, PE, Brazil
[3] Univ Fed Pernambuco, Projeto P&D CIn Samsung, Recife, PE, Brazil
[4] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[5] SiDi, Campinas, Brazil
来源
2020 22ND SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR 2020) | 2020年
关键词
reconstruction; photogrammetry; permissive license; batch; texture; STEREO;
D O I
10.1109/SVR51698.2020.00044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D reconstruction is one of the main topics in computer vision and is heavily applied for creating virtual environments. Photogrammetry is a technique for obtaining 3D information by mapping objects and scenarios using only images. However, this process can take a long time when using large datasets. In this paper, a permissive open-source pipeline is proposed focusing on robustness, efficiency, and low execution time in batch processing. The permissive license allows commercial use without the need of keeping the code open. We mixed an enhanced structure from motion algorithm and a recurrent multi-view reconstruction. We also use Point Cloud Library for normal estimation, surface reconstruction, and texture mapping. We compared our results with COLMAP and MVE techniques using the DTU MVS dataset and real-world scenarios with our own datasets. The results showed a decrease of 69.4% on average time (compared to the best result of other techniques), but also demonstrated the need for more images to generate a complete reconstructed model.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 22 条
[1]   Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces [J].
Alcantarilla, Pablo F. ;
Nuevo, Jesus ;
Bartoli, Adrien .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
[2]  
[Anonymous], 2006, 2006 IEEE COMPUTER S
[3]  
[Anonymous], 2017, C COMP VIS PATT REC
[4]   MVE-An image-based reconstruction environment [J].
Fuhrmann, Simon ;
Langguth, Fabian ;
Moehrle, Nils ;
Waechter, Michael ;
Goesele, Michael .
COMPUTERS & GRAPHICS-UK, 2015, 53 :44-53
[5]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[6]  
Bradski G, 2000, DR DOBBS J, V25, P120
[7]  
Cho K., 2014, C EMP METH NAT LANG, P1724, DOI [10.3115/v1/d14-1179, DOI 10.3115/V1/D14-1179]
[8]   Floating Scale Surface Reconstruction [J].
Fuhrmann, Simon ;
Goesele, Michael .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[9]   Multi-view stereo for community photo collections [J].
Goesele, Michael ;
Snavely, Noah ;
Curless, Brian ;
Hoppe, Hugues ;
Seitz, Steven M. .
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, :825-+
[10]  
Haner S, 2012, LECT NOTES COMPUT SC, V7573, P545, DOI 10.1007/978-3-642-33709-3_39