Microcanonical foundation for systems with power-law distributions

被引:44
作者
Abe, S [1 ]
Rajagopal, AK
机构
[1] Nihon Univ, Coll Sci & Technol, Chiba 2748501, Japan
[2] USN, Res Lab, Washington, DC 20375 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 48期
关键词
D O I
10.1088/0305-4470/33/48/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a microcanonical basis with the principle of equal a priori probability, it is shown using the method of steepest descents that besides ordinary Boltzmann-Gibbs theory with the exponential distribution a theory describing systems with power-law distributions can also be derived.
引用
收藏
页码:8733 / 8738
页数:6
相关论文
共 17 条
[1]   Rates of convergence of non-extensive statistical distributions to Levy distributions in full and half-spaces [J].
Abe, S ;
Rajagopal, AK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48) :8723-8732
[2]   Nonuniqueness of canonical ensemble theory arising from microcanonical basis [J].
Abe, S ;
Rajagopal, AK .
PHYSICS LETTERS A, 2000, 272 (5-6) :341-345
[3]  
ABE S, 2000, CONDMAT0009400
[4]  
ABE S, 2000, IN PRESS EUROPHYS LE
[5]  
[Anonymous], 1974, NONEQUILIBRIUM STAT
[6]   EQUIPROBABILITY, INFERENCE, AND ENTROPY IN QUANTUM-THEORY [J].
BALIAN, R ;
BALAZS, NL .
ANNALS OF PHYSICS, 1987, 179 (01) :97-144
[7]   Levy distribution of single molecule line shape cumulants in glasses [J].
Barkai, E ;
Silbey, R ;
Zumofen, G .
PHYSICAL REVIEW LETTERS, 2000, 84 (23) :5339-5342
[8]   Application of generalized thermostatistics to fully developed turbulence [J].
Beck, C .
PHYSICA A, 2000, 277 (1-2) :115-123
[9]  
Beck C., 1993, THERMODYNAMICS CHAOT
[10]   A nonextensive thermodynamical equilibrium approach in e+e- → hadrons [J].
Bediaga, I ;
Curado, EMF ;
de Miranda, JM .
PHYSICA A, 2000, 286 (1-2) :156-163