Variable Min-Sum Decoding Based on Generalized Mutual Information Metric

被引:0
作者
Xu, Yin [1 ]
He, Dazhi [1 ]
Guan, Yunfeng [1 ]
Shi, Yijun [2 ]
Zhang, Wenjun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China
[2] Natl Res Engn Ctr Digital Televis, Shanghai, Peoples R China
来源
2014 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB) | 2014年
关键词
Decoding; Generalized mutual Informatin; LDPC; Variable min sum; PARITY-CHECK CODES; BELIEF PROPAGATION; LDPC CODES; ALGORITHM;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Min Sum algorithm simplifies the non-linear check node operation of Belief Propagation algorithm via linear approximation, which greatly reduces the complexity of realization of decoder but degrades the performance as well. The resulting sub-optimality could be tempered via scaling of LLRs, e. g. fixed optimal scaling applied to Min Sum output resulting in the Normalized Min Sum algorithm, and variable scaling schemes gradually appear in literature. In this paper, we study the variable scaling decoding algorithm, and propose to generate variable scaling sequences via generalized mutual information (GMI) metric. Simulation results on real LDPC codes for different decoding algorithms have shown that our GMI metric performs better than the variable scaling scheme appearing in literature, and meanwhile improves substantially in terms of BER over the conventional Normalized Min Sum algorithm.
引用
收藏
页数:5
相关论文
共 13 条
[1]   Near optimum universal belief propagation based decoding of low-density parity check codes [J].
Chen, JH ;
Fossorier, MPC .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (03) :406-414
[2]   Density evolution for two improved BP-based decoding algorithms of LDPC codes [J].
Chen, JH ;
Fossorier, MPC .
IEEE COMMUNICATIONS LETTERS, 2002, 6 (05) :208-210
[3]   Reduced-complexity decoding algorithm for low-density parity-check codes [J].
Eleftheriou, E ;
Mittelholzer, T ;
Dholakia, A .
ELECTRONICS LETTERS, 2001, 37 (02) :102-104
[4]   Reduced complexity iterative decoding of low-density parity check codes based on belief propagation [J].
Fossorier, MPC ;
Mihaljevic, M ;
Imai, H .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (05) :673-680
[5]   LOW-DENSITY PARITY-CHECK CODES [J].
GALLAGER, RG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01) :21-&
[6]   Degree-matched check node decoding for regular and irregular LDPCs [J].
Howard, Sheryl L. ;
Schlegel, Christian ;
Gaudet, Vincent C. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2006, 53 (10) :1054-1058
[7]  
Lechner G., 2003, INT S INF THEOR ITS
[8]  
Lechner G., 2006, INT S 6 INT ITG C SO, P1
[9]   Good error-correcting codes based on very sparse matrices [J].
MacKay, DJC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :399-431
[10]   The capacity of low-density parity-check codes under message-passing decoding [J].
Richardson, TJ ;
Urbanke, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :599-618