Hopf Bifurcation of an Epidemic Model with Delay

被引:4
作者
Song, Li-Peng [1 ]
Ding, Xiao-Qiang [1 ]
Feng, Li-Ping [1 ]
Shi, Qiong [1 ]
机构
[1] North Univ China, Dept Comp Sci & Technol, Taiyuan 030051, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSMISSION DYNAMICS; BRUCELLOSIS MODEL; GLOBAL STABILITY; TIME-DELAY; DISEASE; POPULATION; BEHAVIOR; MEASLES; SYSTEM;
D O I
10.1371/journal.pone.0157367
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A spatiotemporal epidemic model with nonlinear incidence rate and Neumann boundary conditions is investigated. On the basis of the analysis of eigenvalues of the eigenpolynomial, we derive the conditions of the existence of Hopf bifurcation in one dimension space. By utilizing the normal form theory and the center manifold theorem of partial functional differential equations (PFDs), the properties of bifurcating periodic solutions are analyzed. Moreover, according to numerical simulations, it is found that the periodic solutions can emerge in delayed epidemic model with spatial diffusion, which is consistent with our theoretical results. The obtained results may provide a new viewpoint for the recurrent outbreak of disease.
引用
收藏
页数:21
相关论文
共 45 条
[1]  
Abta A., 2012, Electron. J. Differ. Equ, V2012, P1
[2]   REGULATION AND STABILITY OF HOST-PARASITE POPULATION INTERACTIONS .1. REGULATORY PROCESSES [J].
ANDERSON, RM ;
MAY, RM .
JOURNAL OF ANIMAL ECOLOGY, 1978, 47 (01) :219-247
[3]  
[Anonymous], 1993, LECT NOTES BIOMATHEM
[4]   Ebola Virus Disease in West Africa - The First 9 Months of the Epidemic and Forward Projections [J].
Aylward, Bruce ;
Barboza, Philippe ;
Bawo, Luke ;
Bertherat, Eric ;
Bilivogui, Pepe ;
Blake, Isobel ;
Brennan, Rick ;
Briand, Sylvie ;
Chakauya, Jethro Magwati ;
Chitala, Kennedy ;
Conteh, Roland M. ;
Cori, Anne ;
Croisier, Alice ;
Dangou, Jean-Marie ;
Diallo, Boubacar ;
Donnelly, Christl A. ;
Dye, Christopher ;
Eckmanns, Tim ;
Ferguson, Neil M. ;
Formenty, Pierre ;
Fuhrer, Caroline ;
Fukuda, Keiji ;
Garske, Tini ;
Gasasira, Alex ;
Gbanyan, Stephen ;
Graaff, Peter ;
Heleze, Emmanuel ;
Jambai, Amara ;
Jombart, Thibaut ;
Kasolo, Francis ;
Kadiobo, Albert Mbule ;
Keita, Sakoba ;
Kertesz, Daniel ;
Kone, Moussa ;
Lane, Chris ;
Markoff, Jered ;
Massaquoi, Moses ;
Mills, Harriet ;
Mulba, John Mike ;
Musa, Emmanuel ;
Myhre, Joel ;
Nasidi, Abdusalam ;
Nilles, Eric ;
Nouvellet, Pierre ;
Nshimirimana, Deo ;
Nuttall, Isabelle ;
Nyenswah, Tolbert ;
Olu, Olushayo ;
Pendergast, Scott ;
Perea, William .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (16) :1481-1495
[5]  
Bartlett M.S., 1956, P 3 BERK S MATH STAT, P81, DOI DOI 10.2307/2342553
[6]  
BERETTA E, 1995, J MATH BIOL, V33, P250, DOI 10.1007/BF00169563
[7]   THE EFFECT OF INTEGRAL CONDITIONS IN CERTAIN EQUATIONS MODELING EPIDEMICS AND POPULATION-GROWTH [J].
BUSENBERG, S ;
COOKE, KL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1980, 10 (01) :13-32
[8]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[9]   Modeling the SARS epidemic [J].
Dye, C ;
Gay, N .
SCIENCE, 2003, 300 (5627) :1884-1885
[10]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETERS AND APPLICATIONS TO HOPF-BIFURCATION [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :181-200