Traveling wave solutions of the K(m, n) equation with generalized evolution

被引:30
作者
Bruzon, M. S. [1 ]
Gandarias, M. L. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, POB 40, Cadiz 11510, Spain
关键词
nonlinear; traveling wave solutions; NONLINEAR DIFFERENTIAL-EQUATIONS; DISPERSIVE K(M; COMPACT; SYMMETRIES;
D O I
10.1002/mma.1339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We have obtained traveling wave solutions of a K(m, n) equation with generalized evolution. A catalogue of new exact solutions are given. A set of solitons, kinks, antikinks and compactons are derived. Copyright (c) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:5851 / 5857
页数:7
相关论文
共 21 条
[1]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[2]   Classical and nonclassical symmetries for a Kuramoto-Sivashinsky equation with dispersive effects [J].
Bruzon, M. S. ;
Gandarias, M. L. ;
Camacho, J. C. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (16) :2091-2100
[3]   Exact solutions of a generalized Boussinesq equation [J].
Bruzon, M. S. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (01) :894-904
[4]  
Bruzón MS, 2008, MATH COMPUT SCI ENG, P159
[5]  
BRUZON MS, 2009, 4 WORKSH GROUP AN DI, P45
[6]   Solutions through nonclassical potential symmetries for a generalized inhomogeneous nonlinear diffusion equation [J].
Gandarias, M. L. ;
Bruzon, M. S. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (07) :753-767
[7]  
Gandarias M.L., 1997, SYM NONLIN MATH PHYS, V1, P130
[8]   Construction of solitary solution and compacton-like solution by variational iteration method [J].
He, JH ;
Wu, XH .
CHAOS SOLITONS & FRACTALS, 2006, 29 (01) :108-113
[9]   Exp-function method for nonlinear wave equations [J].
He, Ji-Huan ;
Wu, Xu-Hong .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :700-708
[10]   Simplest equation method to look for exact solutions of nonlinear differential equations [J].
Kudryashov, NA .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1217-1231