Exponentially many graphs have a Q-cospectral mate

被引:7
作者
Carvalho, Joao [1 ]
Souza, Bruna S. [1 ]
Trevisan, Vilmar [1 ]
Tura, Fernando C. [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
[2] Univ Fed Santa Maria, Dept Matemat, BR-97105900 Santa Maria, RS, Brazil
关键词
Cospectral graphs; Signless Laplacian matrix; Threshold graph; SIGNLESS LAPLACIAN; SPECTRAL THEORY;
D O I
10.1016/j.disc.2017.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop an algorithm for computing the characteristic polynomial of matrices related to threshold graphs. We use this as tool to exhibit, for any natural number n >= 4, 2(n-4) graphs with n vertices that have a non isomorphic pair with the same signless Laplacian spectrum. We also show how to construct infinite families of pairs of non isomorphic graphs having the same Q-spectrum. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2079 / 2085
页数:7
相关论文
共 17 条
[1]   Connected graphs of fixed order and size with maximal Q-index: Some spectral bounds [J].
Andelic, Milica ;
da Fonseca, Carlos M. ;
Simic, Slobodan K. ;
Tosic, Dejan V. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) :448-459
[2]  
[Anonymous], 2016, ARXIV151203547V2
[3]  
Cvetkovi DM, 2008, BULLETIN, V137, P131
[4]   Signless Laplacians of finite graphs [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) :155-171
[5]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, III [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) :156-166
[6]   TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :19-33
[7]   Towards a spectral theory of graphs based on the signless Laplacian, II [J].
Cvetkovic, Dragos ;
Simic, Slobodan K. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2257-2272
[8]  
Godsil C., 1976, Proceedings of the 4th Australian Conference on Combinatorial Mathematics, P73
[9]  
Godsil C. D., 1982, Aequationes Math, V25, P257, DOI [DOI 10.1007/BF02189621, 10.1007/BF02189621]
[10]   Enumeration of cospectral graphs [J].
Haemers, WH ;
Spence, E .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (02) :199-211