Long-time position distribution of an active Brownian particle in two dimensions

被引:61
作者
Basu, Urna [1 ]
Majumdar, Satya N. [2 ]
Rosso, Alberto [2 ]
Schehr, Gregory [2 ]
机构
[1] Rainan Res Inst, Bengaluru 560080, India
[2] Univ Paris Sud, Univ Paris Saclay, CNRS, LPTMS, F-91405 Orsay, France
关键词
PHYSICS;
D O I
10.1103/PhysRevE.100.062116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the late-time dynamics of a single active Brownian particle in two dimensions with speed v(0) and rotation diffusion constant D-R. We show that at late times t >> D-R(-1), while the position probability distribution P(x, y, t) in the x-y plane approaches a Gaussian form near its peak describing the typical diffusive fluctuations, it has non-Gaussian tails describing atypical rare fluctuations when root x(2)+y(2) similar to v(0)t. In this regime, the distribution admits a large deviation form, P(x, y, t) similar to exp {-t D-R Phi[root x(2)+y(2)/(v(0)t)]}, where we compute the rate function Phi(z) analytically and also numerically using an importance sampling method. We show that the rate function Phi(z), encoding the rare fluctuations, still carries the trace of activity even at late times. Another way of detecting activity at late times is to subject the active particle to an external harmonic potential. In this case we show that the stationary distribution P-stat (x, y) depends explicitly on the activity parameter D-R(-1) and undergoes a crossover, as D-R increases, from a ring shape in the strongly active limit (D-R -> 0) to a Gaussian shape in the strongly passive limit (D-R -> infinity).
引用
收藏
页数:15
相关论文
共 68 条
[31]   Probing the Spatiotemporal Dynamics of Catalytic Janus Particles with Single-Particle Tracking and Differential Dynamic Microscopy [J].
Kurzthaler, Christina ;
Devailly, Clemence ;
Arlt, Jochen ;
Franosch, Thomas ;
Poon, Wilson C. K. ;
Martinez, Vincent A. ;
Brown, Aidan T. .
PHYSICAL REVIEW LETTERS, 2018, 121 (07)
[32]   Noncrossing run-and-tumble particles on a line [J].
Le Doussal, Pierre ;
Majumdar, Satya N. ;
Schehr, Gregory .
PHYSICAL REVIEW E, 2019, 100 (01)
[33]   A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics [J].
Lebowitz, JL ;
Spohn, H .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :333-365
[34]   How many eigenvalues of a Gaussian random matrix are positive? [J].
Majumdar, Satya N. ;
Nadal, Celine ;
Scardicchio, Antonello ;
Vivo, Pierpaolo .
PHYSICAL REVIEW E, 2011, 83 (04)
[35]  
Majumdar SN, 2005, CURR SCI INDIA, V89, P2076
[36]  
Malakar K., ARXIV190204171
[37]   Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension [J].
Malakar, Kanaya ;
Jemseena, V. ;
Kundu, Anupam ;
Kumar, K. Vijay ;
Sabhapandit, Sanjib ;
Majumdar, Satya N. ;
Redner, S. ;
Dhar, Abhishek .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
[38]   Hydrodynamics of soft active matter [J].
Marchetti, M. C. ;
Joanny, J. F. ;
Ramaswamy, S. ;
Liverpool, T. B. ;
Prost, J. ;
Rao, Madan ;
Simha, R. Aditi .
REVIEWS OF MODERN PHYSICS, 2013, 85 (03) :1143-1189
[39]   Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model [J].
Martens, K. ;
Angelani, L. ;
Di Leonardo, R. ;
Bocquet, L. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (09)
[40]  
Mumford D., 1993, Algebraic Geometry and Its Applications