Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors

被引:19
|
作者
Nishimoto, Masahiro [1 ]
Kitano, Sho [2 ]
Kowalski, Damian [2 ]
Aoki, Yoshitaka [2 ]
Habazaki, Hiroki [2 ]
机构
[1] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo, Hokkaido 0608628, Japan
[2] Hokkaido Univ, Fac Engn, Div Appl Chem, Sapporo, Hokkaido 0608628, Japan
关键词
electrocatalyst; oxygen evolution reaction; FeNiCo alloy; anodizing; fluoride; STAINLESS-STEEL; SURFACE OXIDATION; OXIDE-FILMS; IRON; CATALYSTS; COBALT; NI; ELECTROLYSIS; ELECTRODES; NANOSHEETS;
D O I
10.1021/acssuschemeng.1c03116
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing highly active and durable electro-catalysts, consisting of earth-abundant elements, for oxygen evolution reaction (OER) is pivotal for large-scale water splitting for hydrogen production. Herein, we report that the commercially available FeNiCo alloy can be converted to a highly active electrocatalyst for OER by galvanostatic anodizing in a fluoride-containing ethylene glycol electrolyte. Anodizing of the alloy develops a porous film consisting of the (FeNiCo)F-2 phase, which is readily converted to a highly active porous oxyhydroxide during anodic polarization in a KOH electrolyte. The anodized alloy exhibits high activity and high durability for OER with an overpotential as low as 0.26 V at a current density of 10 mA cm(-2). The present study demonstrates that a simple and cost-effective anodizing process can be used to form a highly active OER electrode from a low-cost, practical, iron-based alloy. In addition, we found that fluorides containing Fe, Ni, and Co are excellent precursors for the formation of oxyhydroxides exhibiting high OER activity and durability.
引用
收藏
页码:9465 / 9473
页数:9
相关论文
共 50 条
  • [1] Ultrathin NiFeS nanosheets as highly active electrocatalysts for oxygen evolution reaction
    Xue, Yanrong
    Liu, Mengyuan
    Qin, Yangyuanxiang
    Zhang, Yufeng
    Zhang, Xuejiang
    Fang, Jinjie
    Zhang, Xu
    Zhu, Wei
    Zhuang, Zhongbin
    CHINESE CHEMICAL LETTERS, 2022, 33 (08) : 3916 - 3920
  • [2] NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte
    Kim, Byeongyoon
    Oh, Aram
    Kabiraz, Mrinal Kanti
    Hong, Youngmin
    Joo, Jinwhan
    Baik, Hionsuck
    Choi, Sang-Il
    Lee, Kwangyeol
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (12) : 10115 - 10122
  • [3] Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction
    Hirai, Shigeto
    Morita, Kazuki
    Yasuoka, Kenji
    Shibuya, Taizo
    Tojo, Yujiro
    Kamihara, Yoichi
    Miura, Akira
    Suzuki, Hisao
    Ohno, Tomoya
    Matsuda, Takeshi
    Yagi, Shunsuke
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (31) : 15102 - 15109
  • [4] Amorphous FeCoNiBOx nanosheets as highly active and durable electrocatalysts for oxygen evolution reaction in alkaline electrolyte
    Wang, Dan
    Feng, Xiangping
    He, Huan
    Wang, Zhiyuan
    Zheng, Runguo
    Sun, Hongyu
    Liu, Yanguo
    Liu, Chunli
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (48) : 22989 - 22993
  • [5] Facile modified polyol synthesis of FeCo nanoparticles with oxyhydroxide surface layer as efficient oxygen evolution reaction electrocatalysts
    Park, Jong-Hwan
    Woo, Seongwon
    Lee, Jooyoung
    Jung, Han Young
    Ro, Jae Chul
    Park, Chan
    Lim, Byungkwon
    Suh, Su-Jeong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) : 15398 - 15409
  • [6] Synthesis of amorphous FeNiCo trimetallic hybrid electrode from ZIF precursors for efficient oxygen evolution reaction
    Ma, Junchao
    Lu, Xingyu
    Wang, Chao
    Wang, Sha
    He, Wenxiu
    Zhang, Bing
    Shao, Lei
    Zhai, Xu
    Han, Jingrui
    Feng, Shiyi
    Fu, Yu
    Qi, Wei
    NANOTECHNOLOGY, 2022, 33 (03)
  • [7] Highly Durable Oxygen Evolution Reaction Catalyst: Amorphous Oxyhydroxide Derived from Brownmillerite-Type Ca2FeCoO5
    Sato, Yuki
    Aoki, Yoshitaka
    Takase, Kentaro
    Kiuchi, Hisao
    Kowalski, Damian
    Habazaki, Hiroki
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) : 5269 - 5276
  • [8] Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction
    Yang, Yang
    Dang, Lianna
    Shearer, Melinda J.
    Sheng, Hongyuan
    Li, Wenjie
    Chen, Jie
    Xiao, Peng
    Zhang, Yunhuai
    Hamers, Robert J.
    Jin, Song
    ADVANCED ENERGY MATERIALS, 2018, 8 (15)
  • [9] Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts
    Wang, Rongyue
    Xu, Caixia
    Bi, Xuanxuan
    Ding, Yi
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (01) : 5281 - 5286
  • [10] Synthesis of highly active oxygen evolution reaction electrocatalysts using balsa woods
    Li, Luyan
    Zhao, Jiawei
    Song, Yang
    Li, Changming
    Zeng, Xi
    Chen, Li
    Zhang, Sen
    Chen, Ting
    Zhang, Qiang
    Zhao, Xianglong
    Chen, Feiyong
    MATERIALS LETTERS, 2024, 357