Metal hydride hydrogen storage and compression systems for energy storage technologies

被引:271
作者
Tarasov, Boris P. [1 ]
Fursikov, Pavel V. [1 ]
Volodin, Alexey A. [1 ]
Bocharnikov, Mikhail S. [1 ]
Shimkus, Yustinas Ya [1 ]
Kashin, Aleksey M. [2 ]
Yartys, Volodymyr A. [3 ]
Chidziva, Stanford [4 ]
Pasupathi, Sivakumar [4 ]
Lototskyy, Mykhaylo V. [4 ]
机构
[1] Russian Acad Sci, Inst Problems Chem Phys IPCP, Chernogolovka 142432, Russia
[2] InEnergy Grp, Moscow 115201, Russia
[3] Inst Energy Technol, N-2027 Kjeller No, Norway
[4] Univ Western Cape, South African Inst Adv Mat Chem SAIAMC, HySA Syst Competence Ctr, ZA-7535 Bellville, South Africa
基金
新加坡国家研究基金会;
关键词
Energy storage; Hydrogen; Metal hydrides; Hydrogen storage; Hydrogen compression; Integrated systems; FUEL-CELL; POWER; PERFORMANCE; DESIGN; DEGRADATION; INTEGRATION;
D O I
10.1016/j.ijhydene.2020.07.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB(5)- and AB(2)-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H-2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13647 / 13657
页数:11
相关论文
共 60 条
[1]  
[Anonymous], ATLASH2 EUR COMM
[2]  
[Anonymous], INNOVATIVE COMPRESSI
[3]  
ATLAS-MHC, ADV MET HYBR HYDR CO
[4]   SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high temperature proton exchange membrane fuel cells [J].
Baricco, Marcello ;
Bang, Mads ;
Fichtner, Maximilian ;
Hauback, Bjorn ;
Linder, Marc ;
Luetto, Carlo ;
Moretto, Pietro ;
Sgroi, Mauro .
JOURNAL OF POWER SOURCES, 2017, 342 :853-860
[5]   Characterization and analyses of degradation and recovery of LaNi4.78Sn0.22 hydrides following thermal aging [J].
Bowman, R. C., Jr. ;
Payzant, E. A. ;
Wilson, P. R. ;
Pearson, D. P. ;
Ledovskikh, A. ;
Danilov, D. ;
Notten, P. H. L. ;
An, K. ;
Skorpenske, H. D. ;
Wood, D. L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 580 :S207-S210
[6]  
Davids M. W., 2013, Advanced Materials Research, V746, P14, DOI 10.4028/www.scientific.net/AMR.746.14
[7]   Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank [J].
Delhomme, Baptiste ;
Lanzini, Andrea ;
Ortigoza-Villalba, Gustavo A. ;
Nachev, Simeon ;
de Rango, Patricia ;
Santarelli, Massimo ;
Marty, Philippe ;
Leone, Pierluigi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (11) :4740-4747
[8]   Energy storage - a key technology for global energy sustainability [J].
Dell, RM ;
Rand, DAJ .
JOURNAL OF POWER SOURCES, 2001, 100 (1-2) :2-17
[9]   Hydrogen-based PEM auxiliary power unit [J].
Doucet, Guillaume ;
Etievant, Claude ;
Puyenchet, Christophe ;
Grigoriev, Serguey ;
Millet, Pierre .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (11) :4983-4989
[10]   A review on crucibles for induction melting of titanium alloys [J].
Fashu, Simbarashe ;
Lototskyy, Mykhaylo ;
Davids, Moegamat Wafeeq ;
Pickering, Lydia ;
Linkov, Vladimir ;
Tai, Sun ;
Renheng, Tang ;
Xiao Fangming ;
Fursikov, Pavel V. ;
Tarasov, Boris P. .
MATERIALS & DESIGN, 2020, 186