Burn-induced muscle metabolic derangements and mitochondrial dysfunction are associated with activation of HIF-1α and mTORC1: Role of protein farnesylation

被引:17
作者
Nakazawa, Harumasa [1 ,2 ,3 ]
Ikeda, Kazuhiro [4 ]
Shinozaki, Shohei [1 ,2 ,5 ]
Kobayashi, Masayuki [1 ,2 ]
Ikegami, Yuichi [1 ]
Fu, Ming [1 ,2 ]
Nakamura, Tomoyuki [1 ,2 ]
Yasuhara, Shingo [1 ,2 ]
Yu, Yong-Ming [2 ,6 ]
Martyn, J. A. Jeevendra [1 ,2 ]
Tompkins, Ronald G. [2 ,6 ]
Shimokado, Kentaro [5 ]
Yorozu, Tomoko [3 ]
Ito, Hideki [7 ]
Inoue, Satoshi [4 ,7 ]
Kaneki, Masao [1 ,2 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Charlestown, MA 02129 USA
[2] Shriners Hosp Children, Boston, MA 02114 USA
[3] Kyorin Univ, Sch Med, Dept Anesthesiol, Tokyo, Japan
[4] Saitama Med Univ, Res Ctr Genom Med, Div Gene Regulat & Signal Transduct, Saitama, Japan
[5] Tokyo Med & Dent Univ, Grad Sch, Dept Geriatr & Vasc Med, Tokyo, Japan
[6] Harvard Med Sch, Massachusetts Gen Hosp, Dept Surg, Boston, MA 02114 USA
[7] Tokyo Metropolitan Inst Gerontol, Tokyo, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
日本学术振兴会; 美国国家卫生研究院;
关键词
PYRUVATE-KINASE M2; INSULIN-RESISTANCE; SKELETAL-MUSCLE; MAMMALIAN TARGET; SERUM LACTATE; BASE DEFICIT; HYPOXIA; INJURY; EXPRESSION; CRISTAE;
D O I
10.1038/s41598-017-07011-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metabolic derangements are a clinically significant complication of major trauma (e.g., burn injury) and include various aspects of metabolism, such as insulin resistance, muscle wasting, mitochondrial dysfunction and hyperlactatemia. Nonetheless, the molecular pathogenesis and the relation between these diverse metabolic alterations are poorly understood. We have previously shown that burn increases farnesyltransferase (FTase) expression and protein farnesylation and that FTase inhibitor (FTI) prevents burn-induced hyperlactatemia, insulin resistance, and increased proteolysis in mouse skeletal muscle. In this study, we found that burn injury activated mTORC1 and hypoxia-inducible factor (HIF)-1 alpha, which paralleled dysfunction, morphological alterations (i.e., enlargement, partial loss of cristae structure) and impairment of respiratory supercomplex assembly of the mitochondria, and ER stress. FTI reversed or ameliorated all of these alterations in burned mice. These findings indicate that these burn-induced changes, which encompass various aspects of metabolism, may be linked to one another and require protein farnesylation. Our results provide evidence of involvement of the mTORC1-HIF-1 alpha pathway in burn-induced metabolic derangements. Our study identifies protein farnesylation as a potential hub of the signaling network affecting multiple aspects of metabolic alterations after burn injury and as a novel potential molecular target to improve the clinical outcome of severely burned patients.
引用
收藏
页数:14
相关论文
共 68 条
  • [41] Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations
    Mangum, Joshua E.
    Hardee, Justin P.
    Fix, Dennis K.
    Puppa, Melissa J.
    Elkes, Johnathon
    Altomare, Diego
    Bykhovskaya, Yelena
    Campagna, Dean R.
    Schmidt, Paul J.
    Sendamarai, Anoop K.
    Lidov, Hart G. W.
    Barlow, Shayne C.
    Fischel-Ghodsian, Nathan
    Fleming, Mark D.
    Carson, James A.
    Patton, Jeffrey R.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [42] Mitochondrial Complex I Plays an Essential Role in Human Respirasome Assembly
    Moreno-Lastres, David
    Fontanesi, Flavia
    Garcia-Consuegra, Ines
    Martin, Miguel A.
    Arenas, Joaquin
    Barrientos, Antoni
    Ugalde, Cristina
    [J]. CELL METABOLISM, 2012, 15 (03) : 324 - 335
  • [43] Role of Protein Farnesylation in Burn-Induced Metabolic Derangements and Insulin Resistance in Mouse Skeletal Muscle
    Nakazawa, Harumasa
    Yamada, Marina
    Tanaka, Tomokazu
    Kramer, Joshua
    Yu, Yong-Ming
    Fischman, Alan J.
    Martyn, J. A. Jeevendra
    Tompkins, Ronald G.
    Kaneki, Masao
    [J]. PLOS ONE, 2015, 10 (01):
  • [44] Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma
    Ogunbileje, John O.
    Porter, Craig
    Herndon, David N.
    Chao, Tony
    Abdelrahman, Doaa R.
    Papadimitriou, Anastasia
    Chondronikola, Maria
    Zimmers, Teresa A.
    Reidy, Paul T.
    Rasmussen, Blake B.
    Sidossis, Labros S.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2016, 311 (02): : E436 - E448
  • [45] Pajak B, 2008, J PHYSIOL PHARMACOL, V59, P251
  • [46] The Warburg effect then and now: From cancer to inflammatory diseases
    Palsson-McDermott, Eva M.
    O'Neill, Luke A. J.
    [J]. BIOESSAYS, 2013, 35 (11) : 965 - 973
  • [47] HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    Papandreou, I
    Cairns, RA
    Fontana, L
    Lim, AL
    Denko, NC
    [J]. CELL METABOLISM, 2006, 3 (03) : 187 - 197
  • [48] Inflammation, organomegaly, and muscle wasting despite hyperphagia in a mouse model of burn cachexia
    Pedroso, Felipe E.
    Spalding, Paul B.
    Cheung, Michael C.
    Yang, Relin
    Gutierrez, Juan C.
    Bonetto, Andrea
    Zhan, Rui
    Chan, Ho Lam
    Namias, Nicholas
    Koniaris, Leonidas G.
    Zimmers, Teresa A.
    [J]. JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2012, 3 (03) : 199 - 211
  • [49] The metabolic stress response to burn trauma: current understanding and therapies
    Porter, Craig
    Tompkins, Ronald G.
    Finnerty, Celeste C.
    Sidossis, Labros S.
    Suman, Oscar E.
    Herndon, David N.
    [J]. LANCET, 2016, 388 (10052) : 1417 - 1426
  • [50] The impact of severe burns on skeletal muscle mitochondrial function
    Porter, Craig
    Herndon, David N.
    Sidossis, Labros S.
    Borsheim, Elisabet
    [J]. BURNS, 2013, 39 (06) : 1039 - 1047