Robust Statistics-based Anomaly Detection in a Steel Industry

被引:7
作者
Acernese, Antonio [1 ]
Sarda, Kisan [1 ]
Nole, Vittorio [3 ]
Manfredi, Leonardo [3 ]
Greco, Luca [2 ]
Glielmo, Luigi [1 ]
Del Vecchio, Carmen [1 ]
机构
[1] Univ Sannio, Dept Engn, Benevento, Italy
[2] Univ Sannio, Dept Econ & Stat, Benevento, Italy
[3] Siderpotenza Spa, Pittini Grp, Potenza, Italy
来源
2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED) | 2021年
关键词
Anomaly detection; Rolling mills; Reweighted Minimum Covariance Determinant (RMCD); Hidden Markov Model (HMM); Robust Statistics; FAULT-DETECTION;
D O I
10.1109/MED51440.2021.9480311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper reports the outcome of an industrial research project on data-based anomaly detection in a steel making production process. Namely, the study aims to assess a fault detection strategy for rotating machines in the hot rolling mill line. Due to the adopted intense and expensive preventive maintenance program, available data enclose only few samples of fault events, avoiding efficient application of classical data driven anomaly detection models. We developed an automatic two-step strategy which combines two statistical methods. Namely, the combination of Reweighted Minimum Covariance Determinant estimator and Hidden Markov Models helped to identify actual conditions in a drive reducer of a hot steel rolling mill and automatically isolate signs of decreasing performance or upcoming failures.
引用
收藏
页码:1058 / 1063
页数:6
相关论文
共 20 条
[1]   Condition-based maintenance: an industrial application on rotary machines [J].
Acernese, Antonio ;
Del Vecchio, Carmen ;
Tipaldi, Massimo ;
Battilani, Nicola ;
Glielmo, Luigi .
JOURNAL OF QUALITY IN MAINTENANCE ENGINEERING, 2021, 27 (04) :565-585
[2]   ASYMPTOTICS FOR THE MINIMUM COVARIANCE DETERMINANT ESTIMATOR [J].
BUTLER, RW ;
DAVIES, PL ;
JHUN, M .
ANNALS OF STATISTICS, 1993, 21 (03) :1385-1400
[3]   Error rates for multivariate outlier detection [J].
Cerioli, Andrea ;
Farcomeni, Alessio .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) :544-553
[4]   Akaike and Bayesian Information Criteria for Hidden Markov Models [J].
Dridi, Noura ;
Hadzagic, Melita .
IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (02) :302-306
[5]  
Farcomeni A., 2015, ROBUST METHODS DATA
[6]   Fault detection and isolation of bearings in a drive reducer of a hot steel rolling mill [J].
Farina, Marcello ;
Osto, Emanuele ;
Perizzato, Andrea ;
Piroddi, Luigi ;
Scattolini, Riccardo .
CONTROL ENGINEERING PRACTICE, 2015, 39 :35-44
[7]   Outlier Detection for Temporal Data: A Survey [J].
Gupta, Manish ;
Gao, Jing ;
Aggarwal, Charu C. ;
Han, Jiawei .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (09) :2250-2267
[8]  
Haesbroeck G., 2009, STAT METHODOL, V6, P363, DOI [DOI 10.1016/J.STAMET.2008.12.005, 10.1016/j.stamet.2008.12.005]
[9]  
Jeschke S, 2017, SP SER WIRELESS TECH, P3, DOI 10.1007/978-3-319-42559-7_1
[10]   A Robust Data-Driven Fault Detection Approach for Rolling Mills With Unknown Roll Eccentricity [J].
Luo, Hao ;
Li, Kuan ;
Kaynak, Okyay ;
Yin, Shen ;
Huo, Mingyi ;
Zhao, Hao .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) :2641-2648