DNA binding preferences of S. cerevisiae RNA polymerase I Core Factor reveal a preference for the GC-minor groove and a conserved binding mechanism

被引:4
作者
Jackobel, Ashleigh J. [1 ]
Zeberl, Brian J. [1 ]
Glover, Danea M. [1 ,2 ]
Fakhouri, Aula M. [1 ]
Knutson, Bruce A. [1 ]
机构
[1] SUNY Upstate Med Univ, Dept Biochem & Mol Biol, Syracuse, NY 13210 USA
[2] Rutgers State Univ, Rutgers Biomed & Hlth Sci, Sch Grad Studies, Piscataway, NJ 08854 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS | 2019年 / 1862卷 / 09期
基金
美国国家卫生研究院;
关键词
RNA polymerase I; Core Factor; Minor groove; CX-5461; DNA binding; EMSA; TRANSCRIPTION INITIATION-FACTOR; RDNA TRANSCRIPTION; RIBOSOMAL GENE; SPECIES-SPECIFICITY; COMPLEX-FORMATION; TATA BOX; PROMOTER ELEMENTS; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; PROTEIN TBP;
D O I
10.1016/j.bbagrm.2019.194408
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, Core Factor (CF) is a key evolutionarily conserved transcription initiation factor that helps recruit RNA polymerase I (Pol I) to the ribosomal DNA (rDNA) promoter. Upregulated Pol I transcription has been linked to many cancers, and targeting Pol I is an attractive and emerging anti-cancer strategy. Using yeast as a model system, we characterized how CF binds to the Pol I promoter by electrophoretic mobility shift assays (EMSA). Synthetic DNA competitors along with anti-tumor drugs and nucleic acid stains that act as DNA groove blockers were used to discover the binding preference of yeast CF. Our results show that CF employs a unique binding mechanism where it prefers the GC-rich minor groove within the rDNA promoter. In addition, we show that yeast CF is able to bind to the human rDNA promoter sequence that is divergent in DNA sequence and demonstrate CF sensitivity to the human specific Pol I inhibitor, CX-5461. Finally, we show that the human Core Promoter Element (CPE) can functionally replace the yeast Core Element (CE) in vivo when aligned by conserved DNA structural features rather than DNA sequence. Together, these findings suggest that the yeast CF and the human ortholog Selectivity Factor 1 (SL1) use an evolutionarily conserved, structure-based mechanism to target DNA. Their shared mechanism may offer a new avenue in using yeast to explore current and future Pol I anticancer compounds.
引用
收藏
页数:13
相关论文
共 99 条
  • [21] Structural Basis of RNA Polymerase I Transcription Initiation
    Engel, Christoph
    Gubbey, Tobias
    Neyer, Simon
    Sainsbury, Sarah
    Oberthuer, Christiane
    Baejen, Carlo
    Bernecky, Carrie
    Cramer, Patrick
    [J]. CELL, 2017, 169 (01) : 120 - +
  • [22] TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter
    Friedrich, JK
    Panov, KI
    Cabart, P
    Russell, J
    Zomerdijk, JCBM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (33) : 29551 - 29558
  • [23] Distribution of bending propensity in DNA sequences
    Gabrielian, A
    Simoncsits, A
    Pongor, S
    [J]. FEBS LETTERS, 1996, 393 (01) : 124 - 130
  • [24] Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data
    Ganley, Austen R. D.
    Kobayashi, Takehiko
    [J]. GENOME RESEARCH, 2007, 17 (02) : 184 - 191
  • [25] The fundamental ribosomal RNA transcription initiation factor-IB (TIF-IB, SL1, factor D) binds to the rRNA core promoter primarily by minor groove contacts
    Geiss, GK
    Radebaugh, CA
    Paule, MR
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (46) : 29243 - 29254
  • [26] A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription
    Gorski, Julia J.
    Pathak, Shalini
    Panov, Kostya
    Kasciukovic, Taciana
    Panova, Tanya
    Russell, Jackie
    Zomerdijk, Joost C. B. M.
    [J]. EMBO JOURNAL, 2007, 26 (06) : 1560 - 1568
  • [27] Discovery of CX-5461, the First Direct and Selective Inhibitor of RNA Polymerase I, for Cancer Therapeutics
    Haddach, Mustapha
    Schwaebe, Michael K.
    Michaux, Jerome
    Nagasawa, Johnny
    O'Brien, Sean E.
    Whitten, Jeffrey P.
    Pierre, Fabrice
    Kerdoncuff, Pauline
    Darjania, Levan
    Stansfield, Ryan
    Drygin, Denis
    Anderes, Kenna
    Proffitt, Chris
    Bliesath, Josh
    Siddiqui-Jain, Adam
    Omori, May
    Huser, Nanni
    Rice, William G.
    Ryckman, David M.
    [J]. ACS MEDICINAL CHEMISTRY LETTERS, 2012, 3 (07): : 602 - 606
  • [28] Structure and mechanism of the RNA polymerase II transcription machinery
    Hahn, S
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (05) : 394 - 403
  • [29] 2 DISTINCT PROMOTER ELEMENTS IN THE HUMAN RIBOSOMAL-RNA GENE IDENTIFIED BY LINKER SCANNING MUTAGENESIS
    HALTINER, MM
    SMALE, ST
    TJIAN, R
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (01) : 227 - 235
  • [30] Structural mechanism of ATP-independent transcription initiation by RNA polymerase I
    Han, Yan
    Yan, Chunli
    Thi Hoang Duong Nguyen
    Jackobel, Ashleigh J.
    Ivanov, Ivaylo
    Knutson, Bruce A.
    He, Yuan
    [J]. ELIFE, 2017, 6