Hilbert-like spaces over Krull valued fields

被引:0
作者
Ochsenius, H [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Math, Santiago, Chile
来源
ULTRAMETRIC FUNCTIONAL ANALYSIS | 2003年 / 319卷
关键词
Hilbert spaces; Krull valued fields;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey paper we give an account of the development of a theory of Hilbert-like spaces over arbitrary fields. This was first done in an algebraic setting as the study of the so-called orthomodular spaces. Then the subject was studied from the point of view of non-archimedean analysis, in the broader context of Banach spaces over Krull valued fields. The basic concepts and facts are reviewed, and it is shown that in these Hilbert-like spaces there appear strong differences with the classical ones, as far as results and methods are concerned.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 14 条
  • [1] [Anonymous], 1978, Non-Archimedean functional analysis
  • [2] The logic of quantum mechanics
    Birkhoff, G
    von Neumann, J
    [J]. ANNALS OF MATHEMATICS, 1936, 37 : 823 - 843
  • [3] Fassler-Ullmann A, 1983, EXPO MATH, V3, P275
  • [4] DEFINITION OF HILBERT-SPACE
    GROSS, H
    KELLER, HA
    [J]. MANUSCRIPTA MATHEMATICA, 1977, 23 (01) : 67 - 90
  • [5] GROSS H, 1987, ORDER, V4, P79
  • [6] Keller H, 2001, LECT NOTES PURE APPL, V222, P177
  • [7] KELLER H. A., 1995, MATH SLOVACA, V45, P413
  • [8] KELLER HA, 1980, MATH Z, V172, P41
  • [9] Ochsenius H, 1996, B UNIONE MAT ITAL, V10A, P575
  • [10] Ochsenius H, 1999, LECT NOTES PURE APPL, V207, P233