Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering

被引:72
作者
Barros, Natan R. [1 ,2 ,3 ,4 ]
Kim, Han-Jun [1 ,4 ,5 ]
Gouidie, Marcus J. [1 ,5 ]
Lee, KangJu [1 ,4 ,5 ]
Bandaru, Praveen [1 ,4 ,5 ]
Banton, Ethan A. [1 ,5 ]
Sarikhani, Einollah [1 ,5 ]
Sun, Wujin [1 ,4 ,5 ]
Zhang, Shiming [1 ,5 ,6 ]
Cho, Hyun-Jong [1 ,5 ,7 ]
Hartel, Martin C. [1 ,5 ]
Ostrovidov, Serge [1 ,5 ]
Ahadian, Samad [1 ,4 ,5 ]
Hussain, Saber M. [8 ]
Ashammakhi, Nureddin [1 ,5 ,9 ,10 ]
Dokmeci, Mehmet R. [1 ,4 ,5 ,9 ]
Herculano, Rondinelli D. [3 ]
Lee, Junmin [1 ,4 ,5 ]
Khademhosseini, Ali [1 ,4 ,5 ,11 ,12 ]
机构
[1] Univ Calif Los Angeles, Ctr Minimally Invas Therapeut C MIT, Los Angeles, CA 90095 USA
[2] Saao Paulo State Univ Unesp, Sch Pharmaceut Sci, Bioproc & Biotechnol Dept, Km 01 Araraquara Jau Rd, BR-14801902 Araraquara, SP, Brazil
[3] Sao Paulo State Univ Unesp, Inst Chem, 55 Prof Francisco Degni St, BR-14800060 Araraquara, SP, Brazil
[4] Terasaki Inst Biomed Innovat, Los Angeles, CA 90064 USA
[5] Univ Calif Los Angeles, Dept Bioengn, Henry Samueli Sch Engn & Appl Sci, Los Angeles, CA 90095 USA
[6] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
[7] Kangwon Natl Univ, Coll Pharm, Chunchon 24341, Gangwon, South Korea
[8] US Air Force, Res Lab 711th Human Performance Wing, Airman Syst Directorate, Bioeffects Div,Mol Bioeffects Branch USAFRL 711HP, Wright Patterson AFB, OH 45433 USA
[9] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[10] Michigan State Univ, Dept Biomed Engn, E Lansing, MI 48824 USA
[11] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[12] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
基金
巴西圣保罗研究基金会;
关键词
skin tissue engineering; gelatin methacryloyl (GelMA); bioprinting; dermal fibroblasts; multilayered keratinocytes;
D O I
10.1088/1758-5090/aba503
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The skin serves a substantial number of physiological purposes and is exposed to numerous biological and chemical agents owing to its large surface area and accessibility. Yet, current skin models are limited in emulating the multifaceted functions of skin tissues due to a lack of effort on the optimization of biomaterials and techniques at different skin layers for building skin frameworks. Here, we use biomaterial-based approaches and bioengineered techniques to develop a 3D skin model with layers of endothelial cell networks, dermal fibroblasts, and multilayered keratinocytes. Analysis of mechanical properties of gelatin methacryloyl (GelMA)-based bioinks mixed with different portions of alginate revealed bioprinted endothelium could be better modeled to optimize endothelial cell viability with a mixture of 7.5% GelMA and 2% alginate. Matrix stiffness plays a crucial role in modulating produced levels of Pro-Collagen I alpha-1 and matrix metalloproteinase-1 in human dermal fibroblasts and affecting their viability, proliferation, and spreading. Moreover, seeding human keratinocytes with gelatin-coating multiple times proved to be helpful in reducing culture time to create multiple layers of keratinocytes while maintaining their viability. The ability to fabricate selected biomaterials for each layer of skin tissues has implications in the biofabrication of skin systems for regenerative medicine and disease modeling.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Pumpless microfluidic platform for drug testing on human skin equivalents [J].
Abaci, Hasan Erbil ;
Gledhill, Karl ;
Guo, Zongyou ;
Christiano, Angela M. ;
Shuler, Michael L. .
LAB ON A CHIP, 2015, 15 (03) :882-888
[2]   Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface [J].
Alexander, Frank A., Jr. ;
Eggert, Sebastian ;
Wiest, Joachim .
GENES, 2018, 9 (02)
[3]   Skin equivalents: skin from reconstructions as models to study skin development and diseases [J].
Ali, N. ;
Hosseini, M. ;
Vainio, S. ;
Taieb, A. ;
Cario-Andre, M. ;
Rezvani, H. R. .
BRITISH JOURNAL OF DERMATOLOGY, 2015, 173 (02) :391-403
[4]  
[Anonymous], 2013, Medicine., DOI [DOI 10.1016/J.MPMED.2013.04.017, 10.1016/j.mpmed.2013.04.017]
[5]   Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs [J].
Ashammakhi, N. ;
Ahadian, S. ;
Xu, C. ;
Montazerian, H. ;
Ko, H. ;
Nasiri, R. ;
Barros, N. ;
Khademhosseini, A. .
MATERIALS TODAY BIO, 2019, 1
[6]  
BABI LFS, 1995, J IMMUNOL, V154, P1543
[7]  
Baltazar T, 2020, TISSUE ENG PT A, V26, P227, DOI [10.1089/ten.tea.2019.0201, 10.1089/ten.TEA.2019.0201]
[8]   LIVING TISSUE FORMED INVITRO AND ACCEPTED AS SKIN-EQUIVALENT TISSUE OF FULL THICKNESS [J].
BELL, E ;
EHRLICH, HP ;
BUTTLE, DJ ;
NAKATSUJI, T .
SCIENCE, 1981, 211 (4486) :1052-1054
[9]   Simulating Inflammation in a Wound Microenvironment Using a Dermal Wound-on-a-Chip Model [J].
Biglari, Sahar ;
Le, Thi Y. L. ;
Tan, Richard P. ;
Wise, Steven G. ;
Zambon, Alessandro ;
Codolo, Gaia ;
De Bernard, Marina ;
Warkiani, Majid ;
Schindeler, Aaron ;
Naficy, Sina ;
Valtchev, Peter ;
Khademhosseini, Ali ;
Dehghani, Fariba .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (01)
[10]   HOW DOES THE EXTRACELLULAR-MATRIX DIRECT GENE-EXPRESSION [J].
BISSELL, MJ ;
HALL, HG ;
PARRY, G .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 99 (01) :31-68