k-core percolation on multiplex networks

被引:82
作者
Azimi-Tafreshi, N. [1 ]
Gomez-Gardenes, J. [2 ,3 ]
Dorogovtsev, S. N. [4 ,5 ,6 ]
机构
[1] Inst Adv Studies Basic Sci, Dept Phys, Zanjan 451951159, Iran
[2] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Inst Biocomp & Fis Sistemas Complejo BIFI, E-50018 Zaragoza, Spain
[4] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
[5] I3N, P-3810193 Aveiro, Portugal
[6] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
COMPLEX NETWORKS;
D O I
10.1103/PhysRevE.90.032816
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We generalize the theory of k-core percolation on complex networks to k-core percolation on multiplex networks, where k = (k(1), k(2),..., k(M)). Multiplex networks can be defined as networks with vertices of one kind but M different types of edges, representing different types of interactions. For such networks, the k-core is defined as the largest subgraph in which each vertex has at least k(i) edges of each type, i = 1,2,..., M. We derive self-consistency equations to obtain the birth points of the k-cores and their relative sizes for uncorrelated multiplex networks with an arbitrary degree distribution. To clarify our general results, we consider in detail multiplex networks with edges of two types and solve the equations in the particular case of Erdos-Renyi and scale-free multiplex networks. We find hybrid phase transitions at the emergence points of k-cores except the (1,1)-core for which the transition is continuous. We apply the k-core decomposition algorithm to air-transportation multiplex networks, composed of two layers, and obtain the size of (k(1), k(2))-cores.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Explosive Percolation in Random Networks [J].
Achlioptas, Dimitris ;
D'Souza, Raissa M. ;
Spencer, Joel .
SCIENCE, 2009, 323 (5920) :1453-1555
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
Alvarez-Hamelin J. I., 2006, P 18 INT C NEUR INF, P41
[4]  
[Anonymous], 2010, Lectures on Complex Networks
[5]   Avalanche Collapse of Interdependent Networks [J].
Baxter, G. J. ;
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)
[6]   Heterogeneous k-core versus bootstrap percolation on complex networks [J].
Baxter, G. J. ;
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
PHYSICAL REVIEW E, 2011, 83 (05)
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[9]   Catastrophic cascade of failures in interdependent networks [J].
Buldyrev, Sergey V. ;
Parshani, Roni ;
Paul, Gerald ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE, 2010, 464 (7291) :1025-1028
[10]   Emergence of network features from multiplexity [J].
Cardillo, Alessio ;
Gomez-Gardenes, Jesus ;
Zanin, Massimiliano ;
Romance, Miguel ;
Papo, David ;
del Pozo, Francisco ;
Boccaletti, Stefano .
SCIENTIFIC REPORTS, 2013, 3