Fast algorithm to calculate density of states

被引:156
作者
Belardinelli, R. E. [1 ]
Pereyra, V. D. [1 ]
机构
[1] Univ Nacl San Luis, Dept Fis, Lab Ciencias Superficie, CONICET, RA-5700 San Luis, Argentina
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 04期
关键词
D O I
10.1103/PhysRevE.75.046701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An algorithm to calculate the density of states, based on the well-known Wang-Landau method, is introduced. Independent random walks are performed in different restricted ranges of energy, and the resultant density of states is modified by a function of time, F(t)proportional to t(-1), for large time. As a consequence, the calculated density of state, g(m)(E,t), approaches asymptotically the exact value g(ex)(E) as proportional to t(-1/2), avoiding the saturation of the error. It is also shown that the growth of the interface of the energy histogram belongs to the random deposition universality class.
引用
收藏
页数:5
相关论文
共 41 条
[1]  
[Anonymous], 2000, GUIDE MONTE CARLO ME
[2]  
BARABASI AL, 1995, FRACTAL CONCEPT SURF
[3]   Exact distribution of energies in the two-dimensional Ising model [J].
Beale, PD .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :78-81
[4]   Algorithmic aspects of multicanonical simulations [J].
Berg, BA .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 :982-984
[5]   NEW APPROACH TO SPIN-GLASS SIMULATIONS [J].
BERG, BA ;
CELIK, T .
PHYSICAL REVIEW LETTERS, 1992, 69 (15) :2292-2295
[6]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[7]   Multioverlap simulations of the 3D Edwards-Anderson Ising spin glass [J].
Berg, BA ;
Janke, W .
PHYSICAL REVIEW LETTERS, 1998, 80 (21) :4771-4774
[8]   MULTICANONICAL STUDY OF THE 3D ISING SPIN-GLASS [J].
BERG, BA ;
CELIK, T ;
HANSMANN, U .
EUROPHYSICS LETTERS, 1993, 22 (01) :63-68
[9]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[10]   SIMULATION OF AN ENSEMBLE WITH VARYING MAGNETIC-FIELD - A NUMERICAL DETERMINATION OF THE ORDER-ORDER INTERFACE TENSION IN THE D=2 ISING-MODEL [J].
BERG, BA ;
HANSMANN, U ;
NEUHAUS, T .
PHYSICAL REVIEW B, 1993, 47 (01) :497-500