Existence and nonexistence results for anisotropic quasilinear elliptic equations

被引:195
作者
Fragalà, I
Gazzola, F
Kawohl, B
机构
[1] Dipartimento Matemat Politecn, I-20133 Milan, Italy
[2] Univ Cologne, Math Inst, D-50923 Cologne, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2004年 / 21卷 / 05期
关键词
anisotropic Sobolev spaces; critical exponents; minimax methods; Pohozaev identity;
D O I
10.1016/j.anihpc.2003.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a new class of quasilinear elliptic equations with a power-like reaction term: the differential operator weights partial derivatives with different powers, so that the underlying functional-analytic framework involves anisotropic Sobolev spaces. Critical exponents for embeddings of these spaces into L-q have two distinct expressions according to whether the anisotropy is "concentrated" or "spread out". Existence results in the subcritical case are influenced by this phenomenon. On the other hand, nonexistence results are obtained in the at least critical case in domains with a geometric property which modifies the standard notion of starshapedness. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:715 / 734
页数:20
相关论文
共 29 条
[1]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞ [J].
Belloni, M ;
Kawohl, B .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (01) :28-52
[4]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[5]   Local boundedness of minimizers of anisotropic functionals [J].
Cianchi, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02) :147-168
[6]   Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems [J].
Dal Maso, G ;
Murat, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (3-4) :405-412
[7]   On the regularity of solutions in the Pucci-Serrin identity [J].
Degiovanni, M ;
Musesti, A ;
Squassina, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) :317-334
[9]  
Gazzola F., 2002, P 4 INT C DYN SYST D, P327
[10]   GROWTH-CONDITIONS AND REGULARITY, A COUNTEREXAMPLE [J].
GIAQUINTA, M .
MANUSCRIPTA MATHEMATICA, 1987, 59 (02) :245-248