Design of Triple Band Differential Rectenna for RF Energy Harvesting

被引:112
作者
Chandravanshi, Sandhya [1 ]
Sen Sarma, Sanchari [2 ]
Akhtar, Mohammad Jaleel [1 ,2 ]
机构
[1] IIT Kanpur, Mat Sci Programme, Kanpur 208016, Uttar Pradesh, India
[2] IIT Kanpur, Dept Elect Engn, Kanpur 208016, Uttar Pradesh, India
关键词
Differential matching; differential rectenna; interdigital capacitor (IDC); RF energy harvesting; Villard voltage multiplier; WIRELESS; PARAMETERS; RECTIFIER;
D O I
10.1109/TAP.2018.2819699
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A triple band differential rectenna for RF energy harvesting applications is proposed in this paper. The rectenna is designed to operate in frequency bands of universal mobile telecommunication service (2.1 GHz), lower WLAN/Wi-Fi (2.4-2.48 GHz), and WiMAX (3.3-3.8 GHz). For designing the proposed rectenna, first a differentially fed multiband slot antenna that works as the front-end receiving unit is designed, fabricated, and tested to check its performance. It is observed that a peak antenna gain of 7, 5.5, and 9.2 dBi is achieved at 2, 2.5, and 3.5 GHz, respectively. In the next step, a triple band differential rectifier is designed using the Villard voltage doubler where interdigital capacitors (IDCs) in lieu of lumped components are used. The full rectifier circuit comprising of the rectifying unit and impedance matching circuit is fabricated and tested to check its performance in the desired bands. The peak RF-dc conversion efficiency of 68% is obtained using the three-tone measurement. In the final stage, both antenna and the rectifier circuit are integrated through SMA connecter in order to implement the proposed rectenna. Measurement of the proposed rectenna shows an approximate maximum efficiency of 53% at 2 GHz, 31% at 2.5 GHz, and 15.56% at 3.5 GHz.
引用
收藏
页码:2716 / 2726
页数:11
相关论文
共 24 条
[1]   Differential Microstrip Antenna for RF Energy Harvesting [J].
Arrawatia, Mahima ;
Baghini, Maryam Shojaei ;
Kumar, Girish .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (04) :1581-1588
[2]   COMBINED DIFFERENTIAL AND COMMON-MODE SCATTERING PARAMETERS - THEORY AND SIMULATION [J].
BOCKELMAN, DE ;
EISENSTADT, WR .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1995, 43 (07) :1530-1539
[3]   Pure-mode network analyzer for on-wafer measurements of mixed-mode S-parameters of differential circuits [J].
Bockelman, DE ;
Eisenstadt, WR .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (07) :1071-1077
[4]   Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach [J].
Costanzo, Alessandra ;
Dionigi, Marco ;
Masotti, Diego ;
Mongiardo, Mauro ;
Monti, Giuseppina ;
Tarricone, Luciano ;
Sorrentino, Roberto .
PROCEEDINGS OF THE IEEE, 2014, 102 (11) :1692-1711
[5]   Rectenna Design and Optimization Using Reciprocity Theory and Harmonic Balance Analysis for Electromagnetic (EM) Energy Harvesting [J].
Georgiadis, A. ;
Andia, G. ;
Collado, A. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010, 9 :444-446
[6]   Recycling ambient microwave energy with broad-band rectenna arrays [J].
Hagerty, JA ;
Helmbrecht, FB ;
McCalpin, WH ;
Zane, R ;
Popovic, ZB .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2004, 52 (03) :1014-1024
[7]   Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms [J].
Kim, Sangkil ;
Vyas, Rushi ;
Bito, Jo ;
Niotaki, Kyriaki ;
Collado, Ana ;
Georgiadis, Apostolos ;
Tentzeris, Manos M. .
PROCEEDINGS OF THE IEEE, 2014, 102 (11) :1649-1666
[8]   No Battery Required [J].
Kim, Sangkil ;
Mariotti, Chiara ;
Alimenti, Federico ;
Mezzanotte, Paolo ;
Georgiadis, Apostolos ;
Collado, Ana ;
Roselli, Luca ;
Tentzeris, Manos M. .
IEEE MICROWAVE MAGAZINE, 2013, 14 (05) :66-77
[9]  
Kobayashi, 2013, 15 EUR C POW EL APPL, P1
[10]   High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs [J].
Kotani, Koji ;
Sasaki, Atsushi ;
Ito, Takashi .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (11) :3011-3018