Balanced-Euler Approximation Schemes for Stiff Systems of Stochastic Differential Equations

被引:0
作者
Ranjbar, Hassan [1 ]
Torkzadeh, Leila [1 ]
Nouri, Kazem [1 ]
机构
[1] Semnan Univ, Dept Math, Fac Math Stat & Comp Sci, POB 35195-363, Semnan, Iran
关键词
Stiff stochastic differential equation; Balanced-Euler approximation scheme; Mean-square convergence; Mean-square stability; SPLIT-STEP; MEAN-SQUARE; STABILITY ANALYSIS; NUMERICAL SCHEMES; THETA-METHOD; CONVERGENCE; SDES;
D O I
10.2298/FIL2219791R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to design new families of balanced-Euler approximation schemes for the solutions of stiff stochastic differential systems. To prove the mean-square convergence, we use some fundamental inequalities such as the global Lipschitz condition and linear growth bound. The meansquare stability properties of our new schemes are analyzed. Also, numerical examples illustrate the accuracy and efficiency of the proposed schemes.
引用
收藏
页码:6791 / 6804
页数:14
相关论文
共 42 条
  • [1] Abdulle A, 2008, COMMUN MATH SCI, V6, P845
  • [2] Stability analysis of split-step θ-Milstein method for a class of n-dimensional stochastic differential equations
    Ahmadian, D.
    Rouz, O. Farkhondeh
    Ballestra, L. V.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 413 - 424
  • [3] A note on the Balanced method
    Alcock, Jamie
    Burrage, Kevin
    [J]. BIT NUMERICAL MATHEMATICS, 2006, 46 (04) : 689 - 710
  • [4] A class of balanced stochastic Runge-Kutta methods for stiff SDE systems
    Amiri, Sadegh
    Hosseini, S. Mohammad
    [J]. NUMERICAL ALGORITHMS, 2015, 69 (03) : 531 - 552
  • [5] Arnold L, 1974, STOCHASTIC DIFFERENT
  • [6] Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters
    Bevia, V
    Burgos, C.
    Cortes, J-C
    Navarro-Quiles, A.
    Villanueva, R-J
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 138
  • [7] Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities
    Burgos-Simon, Clara
    Cortes, Juan-Carlos
    Martinez-Rodriguez, David
    Villanueva, Rafael J.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (10)
  • [8] Extending the study on the linear advection equation subject to stochastic velocity field and initial condition
    Calatayud, J.
    Cortes, J-C
    Dorini, F. A.
    Jornet, M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 172 (172) : 159 - 174
  • [9] Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique
    Casaban, M. -C.
    Cortes, J. -C.
    Romero, J. -V.
    Rosello, M. -D.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 24 (1-3) : 86 - 97
  • [10] A full probabilistic analysis of a randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition with applications to real data
    Cortes, J. -C.
    Navarro-Quiles, A.
    Romero, J. -V.
    Rosello, M. -D.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (06) : 1479 - 1497